Train-On-Request: An On-Device Continual Learning Workflow for Adaptive Real-World Brain Machine Interfaces

Lan Mei, Cristian Cioflan, Thorir Mar Ingolfsson, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini
{"title":"Train-On-Request: An On-Device Continual Learning Workflow for Adaptive Real-World Brain Machine Interfaces","authors":"Lan Mei, Cristian Cioflan, Thorir Mar Ingolfsson, Victor Kartsch, Andrea Cossettini, Xiaying Wang, Luca Benini","doi":"arxiv-2409.09161","DOIUrl":null,"url":null,"abstract":"Brain-machine interfaces (BMIs) are expanding beyond clinical settings thanks\nto advances in hardware and algorithms. However, they still face challenges in\nuser-friendliness and signal variability. Classification models need periodic\nadaptation for real-life use, making an optimal re-training strategy essential\nto maximize user acceptance and maintain high performance. We propose TOR, a\ntrain-on-request workflow that enables user-specific model adaptation to novel\nconditions, addressing signal variability over time. Using continual learning,\nTOR preserves knowledge across sessions and mitigates inter-session\nvariability. With TOR, users can refine, on demand, the model through on-device\nlearning (ODL) to enhance accuracy adapting to changing conditions. We evaluate\nthe proposed methodology on a motor-movement dataset recorded with a\nnon-stigmatizing wearable BMI headband, achieving up to 92% accuracy and a\nre-calibration time as low as 1.6 minutes, a 46% reduction compared to a naive\ntransfer learning workflow. We additionally demonstrate that TOR is suitable\nfor ODL in extreme edge settings by deploying the training procedure on a\nRISC-V ultra-low-power SoC (GAP9), resulting in 21.6 ms of latency and 1 mJ of\nenergy consumption per training step. To the best of our knowledge, this work\nis the first demonstration of an online, energy-efficient, dynamic adaptation\nof a BMI model to the intrinsic variability of EEG signals in real-time\nsettings.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-machine interfaces (BMIs) are expanding beyond clinical settings thanks to advances in hardware and algorithms. However, they still face challenges in user-friendliness and signal variability. Classification models need periodic adaptation for real-life use, making an optimal re-training strategy essential to maximize user acceptance and maintain high performance. We propose TOR, a train-on-request workflow that enables user-specific model adaptation to novel conditions, addressing signal variability over time. Using continual learning, TOR preserves knowledge across sessions and mitigates inter-session variability. With TOR, users can refine, on demand, the model through on-device learning (ODL) to enhance accuracy adapting to changing conditions. We evaluate the proposed methodology on a motor-movement dataset recorded with a non-stigmatizing wearable BMI headband, achieving up to 92% accuracy and a re-calibration time as low as 1.6 minutes, a 46% reduction compared to a naive transfer learning workflow. We additionally demonstrate that TOR is suitable for ODL in extreme edge settings by deploying the training procedure on a RISC-V ultra-low-power SoC (GAP9), resulting in 21.6 ms of latency and 1 mJ of energy consumption per training step. To the best of our knowledge, this work is the first demonstration of an online, energy-efficient, dynamic adaptation of a BMI model to the intrinsic variability of EEG signals in real-time settings.
按需训练:用于自适应真实世界脑机接口的设备上持续学习工作流程
得益于硬件和算法的进步,脑机接口(BMI)的应用范围正在向临床以外的领域扩展。然而,它们在用户友好性和信号可变性方面仍面临挑战。分类模型需要定期适应现实生活中的使用,因此最佳的再训练策略对于最大限度地提高用户接受度和保持高性能至关重要。我们提出的 TOR 是一种根据请求进行训练的工作流程,它能使用户特定的模型适应新的条件,解决信号随时间变化的问题。通过持续学习,TOR 可以在不同会话中保留知识,并降低会话间的可变性。有了 TOR,用户可以根据需要通过设备上学习(ODL)完善模型,以提高适应不断变化条件的准确性。我们在一个使用可穿戴 BMI 头带记录的运动数据集上对所提出的方法进行了评估,结果显示准确率高达 92%,校准时间低至 1.6 分钟,与天真转移学习工作流程相比缩短了 46%。此外,我们还在 RISC-V 超低功耗 SoC (GAP9) 上部署了训练程序,证明 TOR 适用于极端边缘环境下的 ODL,每个训练步骤的延迟时间为 21.6 毫秒,能耗为 1 毫焦。据我们所知,这项工作首次展示了在实时环境中根据脑电信号的内在可变性对 BMI 模型进行在线、节能、动态适应的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信