Time-Varying Graph Signal Estimation among Multiple Sub-Networks

Tsutahiro Fukuhara, Junya Hara, Hiroshi Higashi, Yuichi Tanaka
{"title":"Time-Varying Graph Signal Estimation among Multiple Sub-Networks","authors":"Tsutahiro Fukuhara, Junya Hara, Hiroshi Higashi, Yuichi Tanaka","doi":"arxiv-2409.10915","DOIUrl":null,"url":null,"abstract":"This paper presents an estimation method for time-varying graph signals among\nmultiple sub-networks. In many sensor networks, signals observed are associated\nwith nodes (i.e., sensors), and edges of the network represent the inter-node\nconnectivity. For a large sensor network, measuring signal values at all nodes\nover time requires huge resources, particularly in terms of energy consumption.\nTo alleviate the issue, we consider a scenario that a sub-network, i.e.,\ncluster, from the whole network is extracted and an intra-cluster analysis is\nperformed based on the statistics in the cluster. The statistics are then\nutilized to estimate signal values in another cluster. This leads to the\nrequirement for transferring a set of parameters of the sub-network to the\nothers, while the numbers of nodes in the clusters are typically different. In\nthis paper, we propose a cooperative Kalman filter between two sub-networks.\nThe proposed method alternately estimates signals in time between two\nsub-networks. We formulate a state-space model in the source cluster and\ntransfer it to the target cluster on the basis of optimal transport. In the\nsignal estimation experiments of synthetic and real-world signals, we validate\nthe effectiveness of the proposed method.","PeriodicalId":501034,"journal":{"name":"arXiv - EE - Signal Processing","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an estimation method for time-varying graph signals among multiple sub-networks. In many sensor networks, signals observed are associated with nodes (i.e., sensors), and edges of the network represent the inter-node connectivity. For a large sensor network, measuring signal values at all nodes over time requires huge resources, particularly in terms of energy consumption. To alleviate the issue, we consider a scenario that a sub-network, i.e., cluster, from the whole network is extracted and an intra-cluster analysis is performed based on the statistics in the cluster. The statistics are then utilized to estimate signal values in another cluster. This leads to the requirement for transferring a set of parameters of the sub-network to the others, while the numbers of nodes in the clusters are typically different. In this paper, we propose a cooperative Kalman filter between two sub-networks. The proposed method alternately estimates signals in time between two sub-networks. We formulate a state-space model in the source cluster and transfer it to the target cluster on the basis of optimal transport. In the signal estimation experiments of synthetic and real-world signals, we validate the effectiveness of the proposed method.
多个子网络间的时变图信号估计
本文提出了一种在多个子网络中估算时变图信号的方法。在许多传感器网络中,观测到的信号与节点(即传感器)相关联,网络的边代表节点间的连接性。为了缓解这一问题,我们考虑的方案是从整个网络中提取一个子网络(即簇),并根据簇内的统计数据进行簇内分析。然后利用这些统计数据来估计另一个簇中的信号值。这就需要将子网络的一组参数传输给其他子网络,而各集群中的节点数量通常是不同的。本文提出了一种两个子网络之间的合作卡尔曼滤波法。我们在源集群中建立了一个状态空间模型,并在最优传输的基础上将其传输到目标集群。在合成信号和实际信号的估计实验中,我们验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信