Triple fusion and feature pyramid decoder for RGB-D semantic segmentation

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bin Ge, Xu Zhu, Zihan Tang, Chenxing Xia, Yiming Lu, Zhuang Chen
{"title":"Triple fusion and feature pyramid decoder for RGB-D semantic segmentation","authors":"Bin Ge, Xu Zhu, Zihan Tang, Chenxing Xia, Yiming Lu, Zhuang Chen","doi":"10.1007/s00530-024-01459-w","DOIUrl":null,"url":null,"abstract":"<p>Current RGB-D semantic segmentation networks incorporate depth information as an extra modality and merge RGB and depth features using methods such as equal-weighted concatenation or simple fusion strategies. However, these methods hinder the effective utilization of cross-modal information. Aiming at the problem that existing RGB-D semantic segmentation networks fail to fully utilize RGB and depth features, we propose an RGB-D semantic segmentation network, based on triple fusion and feature pyramid decoding, which achieves bidirectional interaction and fusion of RGB and depth features via the proposed three-stage cross-modal fusion module (TCFM). The TCFM proposes utilizing cross-modal cross-attention to intermix the data from two modalities into another modality. It fuses the RGB attributes and depth features proficiently, utilizing the channel-adaptive weighted fusion module. Furthermore, this paper introduces a lightweight feature pyramidal decoder network to fuse the multi-scale parts taken out by the encoder effectively. Experiments on NYU Depth V2 and SUN RGB-D datasets demonstrate that the cross-modal feature fusion network proposed in this study efficiently segments intricate scenes.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01459-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Current RGB-D semantic segmentation networks incorporate depth information as an extra modality and merge RGB and depth features using methods such as equal-weighted concatenation or simple fusion strategies. However, these methods hinder the effective utilization of cross-modal information. Aiming at the problem that existing RGB-D semantic segmentation networks fail to fully utilize RGB and depth features, we propose an RGB-D semantic segmentation network, based on triple fusion and feature pyramid decoding, which achieves bidirectional interaction and fusion of RGB and depth features via the proposed three-stage cross-modal fusion module (TCFM). The TCFM proposes utilizing cross-modal cross-attention to intermix the data from two modalities into another modality. It fuses the RGB attributes and depth features proficiently, utilizing the channel-adaptive weighted fusion module. Furthermore, this paper introduces a lightweight feature pyramidal decoder network to fuse the multi-scale parts taken out by the encoder effectively. Experiments on NYU Depth V2 and SUN RGB-D datasets demonstrate that the cross-modal feature fusion network proposed in this study efficiently segments intricate scenes.

Abstract Image

用于 RGB-D 语义分割的三重融合和特征金字塔解码器
目前的 RGB-D 语义分割网络将深度信息作为一种额外的模式,并使用等权重串联或简单融合策略等方法合并 RGB 和深度特征。然而,这些方法阻碍了跨模态信息的有效利用。针对现有的 RGB-D 语义分割网络无法充分利用 RGB 和深度特征的问题,我们提出了一种基于三重融合和特征金字塔解码的 RGB-D 语义分割网络,通过所提出的三级跨模态融合模块(TCFM)实现 RGB 和深度特征的双向交互和融合。TCFM 建议利用跨模态交叉关注将两种模态的数据混合到另一种模态中。它利用信道自适应加权融合模块,将 RGB 属性和深度特征进行了很好的融合。此外,本文还引入了轻量级特征金字塔解码器网络,以有效融合编码器提取的多尺度部分。纽约大学深度 V2 数据集和 SUN RGB-D 数据集的实验表明,本研究提出的跨模态特征融合网络能有效地分割复杂场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multimedia Systems
Multimedia Systems 工程技术-计算机:理论方法
CiteScore
5.40
自引率
7.70%
发文量
148
审稿时长
4.5 months
期刊介绍: This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信