Classification of cervical cells from the Pap smear image using the RES_DCGAN data augmentation and ResNet50V2 with self-attention architecture

Betelhem Zewdu Wubineh, Andrzej Rusiecki, Krzysztof Halawa
{"title":"Classification of cervical cells from the Pap smear image using the RES_DCGAN data augmentation and ResNet50V2 with self-attention architecture","authors":"Betelhem Zewdu Wubineh, Andrzej Rusiecki, Krzysztof Halawa","doi":"10.1007/s00521-024-10404-x","DOIUrl":null,"url":null,"abstract":"<p>Cervical cancer is a type of cancer in which abnormal cell growth occurs on the surface lining of the cervix. In this study, we propose a novel residual deep convolutional generative adversarial network (RES_DCGAN) for data augmentation and ResNet50V2 self-attention method to classify cervical cells, to improve the generalizability and performance of the model. The proposed method involves adding residual blocks in the generator of the DCGAN to enhance data flow and generate higher-quality images. Subsequently, a self-attention mechanism is incorporated at the top of the pre-trained models to allow the model to focus more on significant features of the input data. To evaluate our approach, we utilized the Pomeranian and SIPaKMeD cervical cell imaging datasets. The results demonstrate superior performance, achieving an accuracy of 98% with Xception and 96.4% with ResNet50V2 on the Pomeranian dataset. Additionally, DenseNet121 with self-attention achieved accuracies of 92% and 95% in multiclass and binary classification, respectively, using the SIPaKMeD dataset. In conclusion, our RES_DCGAN-based data augmentation and pre-trained with self-attention model yields a promising result in the classification of cervical cancer cells.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10404-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical cancer is a type of cancer in which abnormal cell growth occurs on the surface lining of the cervix. In this study, we propose a novel residual deep convolutional generative adversarial network (RES_DCGAN) for data augmentation and ResNet50V2 self-attention method to classify cervical cells, to improve the generalizability and performance of the model. The proposed method involves adding residual blocks in the generator of the DCGAN to enhance data flow and generate higher-quality images. Subsequently, a self-attention mechanism is incorporated at the top of the pre-trained models to allow the model to focus more on significant features of the input data. To evaluate our approach, we utilized the Pomeranian and SIPaKMeD cervical cell imaging datasets. The results demonstrate superior performance, achieving an accuracy of 98% with Xception and 96.4% with ResNet50V2 on the Pomeranian dataset. Additionally, DenseNet121 with self-attention achieved accuracies of 92% and 95% in multiclass and binary classification, respectively, using the SIPaKMeD dataset. In conclusion, our RES_DCGAN-based data augmentation and pre-trained with self-attention model yields a promising result in the classification of cervical cancer cells.

Abstract Image

使用 RES_DCGAN 数据增强和具有自我注意架构的 ResNet50V2 对巴氏涂片图像中的宫颈细胞进行分类
宫颈癌是宫颈表面内膜细胞异常增生的一种癌症。在这项研究中,我们提出了一种用于数据增强的新型残差深度卷积生成对抗网络(RES_DCGAN)和 ResNet50V2 自注意方法来对宫颈细胞进行分类,以提高模型的普适性和性能。建议的方法包括在 DCGAN 生成器中添加残差块,以增强数据流并生成更高质量的图像。随后,在预训练模型的顶部加入自我关注机制,让模型更加关注输入数据的重要特征。为了评估我们的方法,我们使用了 Pomeranian 和 SIPaKMeD 宫颈细胞成像数据集。结果显示,Xception 和 ResNet50V2 在波美拉尼亚数据集上的准确率分别达到 98% 和 96.4%,表现出卓越的性能。此外,在使用 SIPaKMeD 数据集进行多类分类和二元分类时,具有自我关注功能的 DenseNet121 的准确率分别达到 92% 和 95%。总之,我们基于 RES_DCGAN 的数据增强和预训练的自我关注模型在宫颈癌细胞分类方面取得了可喜的成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信