Automated defect identification in coherent diffraction imaging with smart continual learning

Orcun Yildiz, Krishnan Raghavan, Henry Chan, Mathew J. Cherukara, Prasanna Balaprakash, Subramanian Sankaranarayanan, Tom Peterka
{"title":"Automated defect identification in coherent diffraction imaging with smart continual learning","authors":"Orcun Yildiz, Krishnan Raghavan, Henry Chan, Mathew J. Cherukara, Prasanna Balaprakash, Subramanian Sankaranarayanan, Tom Peterka","doi":"10.1007/s00521-024-10415-8","DOIUrl":null,"url":null,"abstract":"<p>X-ray Bragg coherent diffraction imaging is a powerful technique for 3D materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive, motivating the need for automated processing of coherent diffraction images, with the goal of minimizing the number of X-ray datasets needed. We automate a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data, in a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training data as needed based on the accuracy of the defect classifier instead of generating all training data a priori. Moreover, we develop a novel data generation mechanism to improve the efficiency of defect identification beyond the previously published continual learning approach. We call the improved method <i>smart continual learning.</i> The results show that our approach improves the accuracy of defect classifiers and reduces training data requirements by up to 98% compared with prior approaches.</p>","PeriodicalId":18925,"journal":{"name":"Neural Computing and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00521-024-10415-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray Bragg coherent diffraction imaging is a powerful technique for 3D materials characterization. However, obtaining X-ray diffraction data is difficult and computationally intensive, motivating the need for automated processing of coherent diffraction images, with the goal of minimizing the number of X-ray datasets needed. We automate a machine learning approach to identify crystalline line defects in samples from the raw coherent diffraction data, in a workflow coupling coherent diffraction data generation with training and inference of deep neural network defect classifiers. In particular, we adopt a continual learning approach, where we generate training data as needed based on the accuracy of the defect classifier instead of generating all training data a priori. Moreover, we develop a novel data generation mechanism to improve the efficiency of defect identification beyond the previously published continual learning approach. We call the improved method smart continual learning. The results show that our approach improves the accuracy of defect classifiers and reduces training data requirements by up to 98% compared with prior approaches.

Abstract Image

利用智能持续学习技术自动识别相干衍射成像中的缺陷
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信