Advanced Mathematical Approaches to Symmetry Breaking in High-Dimensional Field Theories: The Roles of Laurent Series, Residues, and Winding Numbers

Wen-Xiang Chen
{"title":"Advanced Mathematical Approaches to Symmetry Breaking in High-Dimensional Field Theories: The Roles of Laurent Series, Residues, and Winding Numbers","authors":"Wen-Xiang Chen","doi":"arxiv-2409.08294","DOIUrl":null,"url":null,"abstract":"This paper explores the advanced mathematical frameworks used to analyze\nsymmetry breaking in high-dimensional field theories, emphasizing the roles of\nLaurent series, residues, and winding numbers. Symmetry breaking is fundamental\nin various physical contexts, such as high-energy physics, condensed matter\nphysics, and cosmology. The study addresses how these mathematical tools enable\nthe decomposition of complex field behaviors near singularities, revealing the\nintricate dynamics of symmetry breaking. Laurent series facilitate the\nexpansion of fields into manageable terms, particularly around critical points.\nResidues provide a direct link between local field behavior and global physical\nproperties, playing a crucial role in effective action formulations and\nrenormalization processes. Winding numbers offer a topological perspective,\nquantifying how fields wrap around singularities and identifying stable\ntopological structures like vortices, solitons, and monopoles. Extending these\nmethods to (3+1) dimensions highlights the complexity of symmetry breaking in\nhigher-dimensional scenarios, where advanced group theory and topological\ninvariants are necessary to describe non-linear interactions. The findings\nunderscore the importance of integrating these mathematical techniques into\nmodern theoretical physics, with potential applications in quantum gravity,\nstring theory, and the study of topological phases of matter. Future directions\ninclude further exploration of higher-dimensional extensions and their\nimplications for understanding the fundamental nature of symmetry, topology,\nand field dynamics.","PeriodicalId":501190,"journal":{"name":"arXiv - PHYS - General Physics","volume":"198 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the advanced mathematical frameworks used to analyze symmetry breaking in high-dimensional field theories, emphasizing the roles of Laurent series, residues, and winding numbers. Symmetry breaking is fundamental in various physical contexts, such as high-energy physics, condensed matter physics, and cosmology. The study addresses how these mathematical tools enable the decomposition of complex field behaviors near singularities, revealing the intricate dynamics of symmetry breaking. Laurent series facilitate the expansion of fields into manageable terms, particularly around critical points. Residues provide a direct link between local field behavior and global physical properties, playing a crucial role in effective action formulations and renormalization processes. Winding numbers offer a topological perspective, quantifying how fields wrap around singularities and identifying stable topological structures like vortices, solitons, and monopoles. Extending these methods to (3+1) dimensions highlights the complexity of symmetry breaking in higher-dimensional scenarios, where advanced group theory and topological invariants are necessary to describe non-linear interactions. The findings underscore the importance of integrating these mathematical techniques into modern theoretical physics, with potential applications in quantum gravity, string theory, and the study of topological phases of matter. Future directions include further exploration of higher-dimensional extensions and their implications for understanding the fundamental nature of symmetry, topology, and field dynamics.
高维场论中对称性破缺的高级数学方法:劳伦数列、残差和缠绕数的作用
本文探讨了用于分析高维场论中对称性破缺的高级数学框架,强调了洛伦级数、残差和缠绕数的作用。对称性破缺是高能物理、凝聚态物理和宇宙学等各种物理环境中的基本问题。本研究探讨了这些数学工具如何使奇点附近的复杂场行为得以分解,从而揭示对称性破缺的复杂动力学。残差提供了局部场行为与全局物理特性之间的直接联系,在有效作用公式化和正则化过程中发挥着至关重要的作用。缠绕数提供了拓扑视角,量化了场如何缠绕奇点,并识别了稳定的拓扑结构,如涡旋、孤子和单极。将这些方法扩展到(3+1)维度凸显了对称性破缺在更高维度情景中的复杂性,在这种情景中,高级群论和拓扑变量是描述非线性相互作用的必要条件。这些发现强调了将这些数学技术融入现代理论物理学的重要性,并有可能应用于量子引力、弦理论和物质拓扑相的研究。未来的方向包括进一步探索高维扩展及其对理解对称性、拓扑学和场动力学基本性质的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信