YuWen Xu, Bo Wang, RongXin Wang, Ming Cheng, Wei Hua
{"title":"A high torque dual 3-phase permanent magnet vernier machine with strong fault-tolerance","authors":"YuWen Xu, Bo Wang, RongXin Wang, Ming Cheng, Wei Hua","doi":"10.1007/s11431-023-2673-4","DOIUrl":null,"url":null,"abstract":"<p>The field modulation effect has been proposed and investigated in various electric machine topologies. Among them, permanent magnet vernier machines (PMVMs) have attained intensive research due to the high torque density and simple structure. However, the performance of PMVMs in terms of fault tolerance is seldom mentioned. This article proposes a novel dual 3-phase fault-tolerant PMVM with segregated concentric windings. Benefiting from the field modulation effect, the PMVM can generate high torque with low PM flux. The low PM flux also implies small fault currents in the short-circuit case. Therefore, the PMVM exhibits inherent good fault-tolerant capability without sacrificing torque performance. Two independent 3-phase modular winding sets are adopted to improve redundancy. To realize the physical and electrical isolation, each winding set is controlled by a standard 3-phase inverter. The healthy performance and fault tolerance of the proposed machine are evaluated by finite element analysis and verified by experimental tests. The results infer its advantages in healthy conditions and various fault scenarios, including open-circuit, short-circuit, and interturn short-circuit conditions.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2673-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The field modulation effect has been proposed and investigated in various electric machine topologies. Among them, permanent magnet vernier machines (PMVMs) have attained intensive research due to the high torque density and simple structure. However, the performance of PMVMs in terms of fault tolerance is seldom mentioned. This article proposes a novel dual 3-phase fault-tolerant PMVM with segregated concentric windings. Benefiting from the field modulation effect, the PMVM can generate high torque with low PM flux. The low PM flux also implies small fault currents in the short-circuit case. Therefore, the PMVM exhibits inherent good fault-tolerant capability without sacrificing torque performance. Two independent 3-phase modular winding sets are adopted to improve redundancy. To realize the physical and electrical isolation, each winding set is controlled by a standard 3-phase inverter. The healthy performance and fault tolerance of the proposed machine are evaluated by finite element analysis and verified by experimental tests. The results infer its advantages in healthy conditions and various fault scenarios, including open-circuit, short-circuit, and interturn short-circuit conditions.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.