Relativistic elastic membranes: rotating disks and Dyson spheres

Paulo Mourão, José Natário, Rodrigo Vicente
{"title":"Relativistic elastic membranes: rotating disks and Dyson spheres","authors":"Paulo Mourão, José Natário, Rodrigo Vicente","doi":"arxiv-2409.10602","DOIUrl":null,"url":null,"abstract":"We derive the equations of motion for relativistic elastic membranes, that\nis, two-dimensional elastic bodies whose internal energy depends only on their\nstretching, starting from a variational principle. We show how to obtain\nconserved quantities for the membrane's motion in the presence of spacetime\nsymmetries, determine the membrane's longitudinal and transverse speeds of\nsound in isotropic states, and compute the coefficients of linear elasticity\nwith respect to the relaxed configuration. We then use this formalism to\ndiscuss two physically interesting systems: a rigidly rotating elastic disk,\nwidely discussed in the context of Ehrenfest's paradox, and a Dyson sphere,\nthat is, a spherical membrane in equilibrium in Schwarzschild's spacetime, with\nthe isotropic tangential pressure balancing the gravitational attraction.\nSurprisingly, although spherically symmetric perturbations of this system are\nlinearly stable, the axi-symmetric dipolar mode is already unstable. This may\nbe taken as a cautionary tale against misconstruing radial stability as true\nstability.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the equations of motion for relativistic elastic membranes, that is, two-dimensional elastic bodies whose internal energy depends only on their stretching, starting from a variational principle. We show how to obtain conserved quantities for the membrane's motion in the presence of spacetime symmetries, determine the membrane's longitudinal and transverse speeds of sound in isotropic states, and compute the coefficients of linear elasticity with respect to the relaxed configuration. We then use this formalism to discuss two physically interesting systems: a rigidly rotating elastic disk, widely discussed in the context of Ehrenfest's paradox, and a Dyson sphere, that is, a spherical membrane in equilibrium in Schwarzschild's spacetime, with the isotropic tangential pressure balancing the gravitational attraction. Surprisingly, although spherically symmetric perturbations of this system are linearly stable, the axi-symmetric dipolar mode is already unstable. This may be taken as a cautionary tale against misconstruing radial stability as true stability.
相对论弹性膜:旋转盘和戴森球
我们从变分原理出发,推导了相对论弹性膜(即内能只取决于拉伸的二维弹性体)的运动方程。我们展示了如何在存在时空对称性的情况下获得膜运动的守恒量,确定膜在各向同性状态下的纵向和横向声速,并计算相对于松弛构型的线性弹性系数。然后,我们利用这一形式主义讨论了两个物理上有趣的系统:一个是在埃伦费斯特悖论中被广泛讨论的刚性旋转弹性圆盘,另一个是戴森球,即在施瓦兹希尔德时空中处于平衡状态的球膜,其各向同性切向压力平衡了引力吸引力。这也许是一个警示,不要把径向稳定性误解为真正的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信