Elucidating the z-dependence of the MOND acceleration (a_0) within the Scale Invariant Vacuum (SIV) paradigm

Vesselin G. Gueorguiev
{"title":"Elucidating the z-dependence of the MOND acceleration (a_0) within the Scale Invariant Vacuum (SIV) paradigm","authors":"Vesselin G. Gueorguiev","doi":"arxiv-2409.11425","DOIUrl":null,"url":null,"abstract":"In a recent paper: ``On the time dependency of $a_0$\" the authors claim that\nthey have tested ``one of the predictions of the Scale Invariant Vacuum (SIV)\ntheory on MOND\" by studying the dependence of the Modified Newtonian Dynamics\n(MOND) acceleration at two data sets, low-$z$ ($3.2\\times10^{-4}\\le z\\le\n3.2\\times10^{-2}$) and high-$z$ ($0.5\\le z\\le 2.5$). They claim ``both samples\nshow a dependency of $a_0$ from $z$\". Here, the work mentioned above is\nrevisited. The explicit analytic expression for the $z$-dependence of the $a_0$\nwithin the SIV theory is given. Furthermore, the first estimates of the\n$\\Omega_m$ within SIV theory give $\\Omega_{m}=0.28\\pm 0.04$ using the low-z\ndata only, while a value of $\\Omega_{m}=0.055$ is obtained using both data\nsets. This much lower $\\Omega_m$ leaves no room for non-baryonic matter! Unlike\nin the mentioned paper above, the slope in the $z$-dependence of\n$A_0=\\log_{10}(a_0)$ is estimated to be consistent with zero Z-slope for the\ntwo data sets. Finally, the statistics of the data are consistent with the SIV\npredictions; in particular, the possibility of change in the sign of the slopes\nfor the two data sets is explainable within the SIV paradigm; however, the\nuncertainty in the data is too big for the clear demonstration of a\n$z$-dependence yet.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent paper: ``On the time dependency of $a_0$" the authors claim that they have tested ``one of the predictions of the Scale Invariant Vacuum (SIV) theory on MOND" by studying the dependence of the Modified Newtonian Dynamics (MOND) acceleration at two data sets, low-$z$ ($3.2\times10^{-4}\le z\le 3.2\times10^{-2}$) and high-$z$ ($0.5\le z\le 2.5$). They claim ``both samples show a dependency of $a_0$ from $z$". Here, the work mentioned above is revisited. The explicit analytic expression for the $z$-dependence of the $a_0$ within the SIV theory is given. Furthermore, the first estimates of the $\Omega_m$ within SIV theory give $\Omega_{m}=0.28\pm 0.04$ using the low-z data only, while a value of $\Omega_{m}=0.055$ is obtained using both data sets. This much lower $\Omega_m$ leaves no room for non-baryonic matter! Unlike in the mentioned paper above, the slope in the $z$-dependence of $A_0=\log_{10}(a_0)$ is estimated to be consistent with zero Z-slope for the two data sets. Finally, the statistics of the data are consistent with the SIV predictions; in particular, the possibility of change in the sign of the slopes for the two data sets is explainable within the SIV paradigm; however, the uncertainty in the data is too big for the clear demonstration of a $z$-dependence yet.
在尺度不变真空(SIV)范式中阐明 MOND 加速(a_0)的 z 依赖性
在最近的一篇论文中:作者声称,他们通过研究低$z$(3.2\times10^{-4}\le z\le 3.2\times10^{-2}$)和高$z$(0.5\le z\le 2.5$)两个数据集的修正牛顿动力学(MOND)加速度的依赖性,检验了 "尺度不变真空(SIV)理论对MOND的一个预测"。他们声称 "两个样本都显示了 $a_0$ 与 $z$ 的依赖关系"。在此,我们对上述工作进行了回顾。给出了SIV理论中a_0$与$z$相关性的明确解析表达式。此外,在SIV理论中,仅使用低z数据对$\Omega_{m}的首次估计值为$\Omega_{m}=0.28\pm 0.04$,而同时使用两个数据集得到的值($\Omega_{m}=0.055$)。这个低得多的 $\Omega_m$ 没有给非重子物质留下任何空间!与上述论文不同的是,在两组数据中,$A_0=\log_{10}(a_0)$的$z$依赖斜率被估计为与零Z斜率一致。最后,数据的统计与 SIV 预测一致;特别是,两组数据斜率符号变化的可能性在 SIV 范式中是可以解释的;然而,数据的不确定性太大,还不能明确证明 $z$ 的依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信