An Effective Model for the Quantum Schwarzschild Black Hole: Weak Deflection Angle, Quasinormal Modes and Bounding of Greybody Factor

Ángel Rincón, Ali Övgün, Reggie C. Pantig
{"title":"An Effective Model for the Quantum Schwarzschild Black Hole: Weak Deflection Angle, Quasinormal Modes and Bounding of Greybody Factor","authors":"Ángel Rincón, Ali Övgün, Reggie C. Pantig","doi":"arxiv-2409.10930","DOIUrl":null,"url":null,"abstract":"In this paper, we thoroughly explore two crucial aspects of a quantum\nSchwarzschild black solution within four-dimensional space-time: i) the weak\ndeflection angle, ii) the rigorous greybody factor and, iii) the Dirac\nquasinormal modes}. Our investigation involves employing the Gauss-Bonnet\ntheorem to precisely compute the deflection angle and establishing its\ncorrelation with the Einstein ring. Additionally, we derive the rigorous bounds\nfor greybody factors through the utilization of general bounds for reflection\nand transmission coefficients in the context of Schrodinger-like\none-dimensional potential scattering. We also compute the corresponding Dirac\nquasinormal modes using the WKB approximation. We reduce the Dirac equation to\na Schrodinger-like differential equation and solve it with appropriate boundary\nconditions to obtain the quasinormal frequencies. To visually underscore the\nquantum effect, we present figures that illustrate the impact of varying the\nparameter $r_0$, or more specifically, in terms of the parameter $\\alpha$. This\ncomprehensive examination enhances our understanding of the quantum\ncharacteristics inherent in the Schwarzschild black solution, shedding light on\nboth the deflection angle and greybody factors in a four-dimensional space-time\nframework.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we thoroughly explore two crucial aspects of a quantum Schwarzschild black solution within four-dimensional space-time: i) the weak deflection angle, ii) the rigorous greybody factor and, iii) the Dirac quasinormal modes}. Our investigation involves employing the Gauss-Bonnet theorem to precisely compute the deflection angle and establishing its correlation with the Einstein ring. Additionally, we derive the rigorous bounds for greybody factors through the utilization of general bounds for reflection and transmission coefficients in the context of Schrodinger-like one-dimensional potential scattering. We also compute the corresponding Dirac quasinormal modes using the WKB approximation. We reduce the Dirac equation to a Schrodinger-like differential equation and solve it with appropriate boundary conditions to obtain the quasinormal frequencies. To visually underscore the quantum effect, we present figures that illustrate the impact of varying the parameter $r_0$, or more specifically, in terms of the parameter $\alpha$. This comprehensive examination enhances our understanding of the quantum characteristics inherent in the Schwarzschild black solution, shedding light on both the deflection angle and greybody factors in a four-dimensional space-time framework.
量子施瓦兹柴尔德黑洞的有效模型:弱偏转角、准正模和灰体因子边界
在本文中,我们深入探讨了四维时空中量子施瓦兹柴尔德黑解的两个关键方面:i) 弱偏转角;ii) 严格的灰体因子;iii) 迪拉卡常模}。我们的研究包括利用高斯-波内特定理精确计算偏转角,并建立其与爱因斯坦环的相关性。此外,我们还利用类薛定谔一维势散射中的反射系数和透射系数的一般界限,推导出灰体因子的严格界限。我们还利用 WKB 近似法计算了相应的狄拉克正常模式。我们将狄拉克方程简化为类似薛定谔的微分方程,并用适当的边界条件求解,从而得到准正常频率。为了直观地强调量子效应,我们用图表说明了参数$r_0$变化的影响,或者更具体地说,参数$\alpha$变化的影响。这种全面的研究增强了我们对施瓦兹柴尔德黑解中固有的量子特性的理解,揭示了四维时空框架中的偏转角和灰度因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信