TopoMaskV2: Enhanced Instance-Mask-Based Formulation for the Road Topology Problem

M. Esat Kalfaoglu, Halil Ibrahim Ozturk, Ozsel Kilinc, Alptekin Temizel
{"title":"TopoMaskV2: Enhanced Instance-Mask-Based Formulation for the Road Topology Problem","authors":"M. Esat Kalfaoglu, Halil Ibrahim Ozturk, Ozsel Kilinc, Alptekin Temizel","doi":"arxiv-2409.11325","DOIUrl":null,"url":null,"abstract":"Recently, the centerline has become a popular representation of lanes due to\nits advantages in solving the road topology problem. To enhance centerline\nprediction, we have developed a new approach called TopoMask. Unlike previous\nmethods that rely on keypoints or parametric methods, TopoMask utilizes an\ninstance-mask-based formulation coupled with a masked-attention-based\ntransformer architecture. We introduce a quad-direction label representation to\nenrich the mask instances with flow information and design a corresponding\npost-processing technique for mask-to-centerline conversion. Additionally, we\ndemonstrate that the instance-mask formulation provides complementary\ninformation to parametric Bezier regressions, and fusing both outputs leads to\nimproved detection and topology performance. Moreover, we analyze the\nshortcomings of the pillar assumption in the Lift Splat technique and adapt a\nmulti-height bin configuration. Experimental results show that TopoMask\nachieves state-of-the-art performance in the OpenLane-V2 dataset, increasing\nfrom 44.1 to 49.4 for Subset-A and 44.7 to 51.8 for Subset-B in the V1.1 OLS\nbaseline.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the centerline has become a popular representation of lanes due to its advantages in solving the road topology problem. To enhance centerline prediction, we have developed a new approach called TopoMask. Unlike previous methods that rely on keypoints or parametric methods, TopoMask utilizes an instance-mask-based formulation coupled with a masked-attention-based transformer architecture. We introduce a quad-direction label representation to enrich the mask instances with flow information and design a corresponding post-processing technique for mask-to-centerline conversion. Additionally, we demonstrate that the instance-mask formulation provides complementary information to parametric Bezier regressions, and fusing both outputs leads to improved detection and topology performance. Moreover, we analyze the shortcomings of the pillar assumption in the Lift Splat technique and adapt a multi-height bin configuration. Experimental results show that TopoMask achieves state-of-the-art performance in the OpenLane-V2 dataset, increasing from 44.1 to 49.4 for Subset-A and 44.7 to 51.8 for Subset-B in the V1.1 OLS baseline.
TopoMaskV2:基于实例掩码的道路拓扑问题增强公式
最近,由于中线在解决道路拓扑问题方面的优势,它已成为一种流行的车道表示方法。为了加强中心线预测,我们开发了一种名为 TopoMask 的新方法。与之前依赖关键点或参数方法的方法不同,TopoMask 采用了基于实例掩码的表述方式,并结合了基于掩码-注意力的变换器架构。我们引入了四方向标签表示法,用流动信息丰富掩模实例,并设计了相应的掩模到中心线转换的后处理技术。此外,我们还证明了实例-掩模表述为参数贝塞尔回归提供了互补信息,融合这两种输出可提高检测和拓扑性能。此外,我们还分析了 Lift Splat 技术中支柱假设的缺点,并调整了多高度 bin 配置。实验结果表明,TopoMask 在 OpenLane-V2 数据集中达到了最先进的性能,在 V1.1 OLS 基线上,子集-A 的性能从 44.1 提高到 49.4,子集-B 的性能从 44.7 提高到 51.8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信