Field Sources for $f(R,R_{μν})$ Black-Bounce Solutions: The Case of K-Gravity

G. Alencar, M. Nilton, Manuel E. Rodrigues, Marcos V. de S. Silva
{"title":"Field Sources for $f(R,R_{μν})$ Black-Bounce Solutions: The Case of K-Gravity","authors":"G. Alencar, M. Nilton, Manuel E. Rodrigues, Marcos V. de S. Silva","doi":"arxiv-2409.12101","DOIUrl":null,"url":null,"abstract":"In the framework of Simpson-Visser, the search for field sources that produce\nblack bounces in alternative gravity theories has remained unresolved. In this\npaper, the first in a series exploring sources for alternative theories of\ngravity, we identify such a source for the $2+1$ dimensional K-gravity black\nbounce. The K-gravity black hole is notable for allowing asymptotically locally\nflat solutions in lower-dimensional spacetime, yet it possesses curvature\nsingularities concealed within the event horizon. Using the Simpson-Visser\nregularization technique, we eliminate this singularity, constructing\nasymptotically locally flat black-bounce solutions in $2+1$ dimensions. We\nexplore the causal structure of these solutions, identifying the conditions\nunder which they describe regular black holes or wormholes. By calculating\ncurvature invariants, we confirm the absence of singularities within the event\nhorizon. Additionally, we demonstrate that, beyond non-linear electrodynamics,\na non-linear scalar field is required to source the solution. Finally, we\ninvestigate the geodesic structure of this spacetime, analyzing the\ntrajectories of both massive and massless particles. We also confirm the\nexistence of circular orbits and assess their stability.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the framework of Simpson-Visser, the search for field sources that produce black bounces in alternative gravity theories has remained unresolved. In this paper, the first in a series exploring sources for alternative theories of gravity, we identify such a source for the $2+1$ dimensional K-gravity black bounce. The K-gravity black hole is notable for allowing asymptotically locally flat solutions in lower-dimensional spacetime, yet it possesses curvature singularities concealed within the event horizon. Using the Simpson-Visser regularization technique, we eliminate this singularity, constructing asymptotically locally flat black-bounce solutions in $2+1$ dimensions. We explore the causal structure of these solutions, identifying the conditions under which they describe regular black holes or wormholes. By calculating curvature invariants, we confirm the absence of singularities within the event horizon. Additionally, we demonstrate that, beyond non-linear electrodynamics, a non-linear scalar field is required to source the solution. Finally, we investigate the geodesic structure of this spacetime, analyzing the trajectories of both massive and massless particles. We also confirm the existence of circular orbits and assess their stability.
$f(R,R_{μν})$黑弹解的场源:K引力案例
在辛普森-维瑟的框架内,寻找在另类引力理论中产生黑弹的场源的问题一直悬而未决。本文是探索另类引力理论场源系列的第一篇论文,我们为 2+1$ 维 K 引力黑反弹确定了这样一个场源。K引力黑洞的显著特点是允许在低维时空中出现近似局部平坦的解,但它在事件视界内隐藏着曲率奇异性。我们利用辛普森-维塞尔正则化技术消除了这种奇异性,从而在 2+1 美元维度中构建了渐近局部平坦的黑洞反弹解。我们探索了这些解的因果结构,确定了它们描述规则黑洞或虫洞的条件。通过计算曲率不变量,我们证实在偶数边界内不存在奇点。此外,我们还证明,除了非线性电动力学之外,还需要一个非线性标量场作为解的来源。最后,我们研究了这个时空的大地结构,分析了大质量和无质量粒子的轨迹。我们还证实了圆形轨道的存在,并评估了其稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信