Knowledge Adaptation Network for Few-Shot Class-Incremental Learning

Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian
{"title":"Knowledge Adaptation Network for Few-Shot Class-Incremental Learning","authors":"Ye Wang, Yaxiong Wang, Guoshuai Zhao, Xueming Qian","doi":"arxiv-2409.11770","DOIUrl":null,"url":null,"abstract":"Few-shot class-incremental learning (FSCIL) aims to incrementally recognize\nnew classes using a few samples while maintaining the performance on previously\nlearned classes. One of the effective methods to solve this challenge is to\nconstruct prototypical evolution classifiers. Despite the advancement achieved\nby most existing methods, the classifier weights are simply initialized using\nmean features. Because representations for new classes are weak and biased, we\nargue such a strategy is suboptimal. In this paper, we tackle this issue from\ntwo aspects. Firstly, thanks to the development of foundation models, we employ\na foundation model, the CLIP, as the network pedestal to provide a general\nrepresentation for each class. Secondly, to generate a more reliable and\ncomprehensive instance representation, we propose a Knowledge Adapter (KA)\nmodule that summarizes the data-specific knowledge from training data and fuses\nit into the general representation. Additionally, to tune the knowledge learned\nfrom the base classes to the upcoming classes, we propose a mechanism of\nIncremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL.\nTaken together, our proposed method, dubbed as Knowledge Adaptation Network\n(KANet), achieves competitive performance on a wide range of datasets,\nincluding CIFAR100, CUB200, and ImageNet-R.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot class-incremental learning (FSCIL) aims to incrementally recognize new classes using a few samples while maintaining the performance on previously learned classes. One of the effective methods to solve this challenge is to construct prototypical evolution classifiers. Despite the advancement achieved by most existing methods, the classifier weights are simply initialized using mean features. Because representations for new classes are weak and biased, we argue such a strategy is suboptimal. In this paper, we tackle this issue from two aspects. Firstly, thanks to the development of foundation models, we employ a foundation model, the CLIP, as the network pedestal to provide a general representation for each class. Secondly, to generate a more reliable and comprehensive instance representation, we propose a Knowledge Adapter (KA) module that summarizes the data-specific knowledge from training data and fuses it into the general representation. Additionally, to tune the knowledge learned from the base classes to the upcoming classes, we propose a mechanism of Incremental Pseudo Episode Learning (IPEL) by simulating the actual FSCIL. Taken together, our proposed method, dubbed as Knowledge Adaptation Network (KANet), achieves competitive performance on a wide range of datasets, including CIFAR100, CUB200, and ImageNet-R.
知识适应网络促进少数人的课堂强化学习
少量类别增量学习(FSCIL)旨在使用少量样本增量识别新的类别,同时保持之前学习的类别的性能。解决这一难题的有效方法之一是构建原型进化分类器。尽管大多数现有方法都取得了进步,但分类器权重只是简单地使用平均特征进行初始化。由于新类别的表征较弱且有偏差,我们认为这种策略是次优的。在本文中,我们从两个方面来解决这个问题。首先,得益于基础模型的发展,我们采用基础模型 CLIP 作为网络基座,为每个类提供一般表示。其次,为了生成更可靠、更全面的实例表示,我们提出了一个知识适配器(KA)模块,该模块总结了来自训练数据的特定数据知识,并将其融合到一般表示中。此外,为了将从基础类中学习到的知识调整到即将到来的类中,我们通过模拟实际的 FSCIL,提出了一种增量伪集学习(IPEL)机制。总之,我们提出的方法被称为知识适配网络(KANet),在包括 CIFAR100、CUB200 和 ImageNet-R 在内的各种数据集上都取得了具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信