Agglomerative Token Clustering

Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, Thomas B. Moeslund
{"title":"Agglomerative Token Clustering","authors":"Joakim Bruslund Haurum, Sergio Escalera, Graham W. Taylor, Thomas B. Moeslund","doi":"arxiv-2409.11923","DOIUrl":null,"url":null,"abstract":"We present Agglomerative Token Clustering (ATC), a novel token merging method\nthat consistently outperforms previous token merging and pruning methods across\nimage classification, image synthesis, and object detection & segmentation\ntasks. ATC merges clusters through bottom-up hierarchical clustering, without\nthe introduction of extra learnable parameters. We find that ATC achieves\nstate-of-the-art performance across all tasks, and can even perform on par with\nprior state-of-the-art when applied off-the-shelf, i.e. without fine-tuning.\nATC is particularly effective when applied with low keep rates, where only a\nsmall fraction of tokens are kept and retaining task performance is especially\ndifficult.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present Agglomerative Token Clustering (ATC), a novel token merging method that consistently outperforms previous token merging and pruning methods across image classification, image synthesis, and object detection & segmentation tasks. ATC merges clusters through bottom-up hierarchical clustering, without the introduction of extra learnable parameters. We find that ATC achieves state-of-the-art performance across all tasks, and can even perform on par with prior state-of-the-art when applied off-the-shelf, i.e. without fine-tuning. ATC is particularly effective when applied with low keep rates, where only a small fraction of tokens are kept and retaining task performance is especially difficult.
聚类令牌聚类
我们提出了标记聚合法(Agglomerative Token Clustering,ATC),这是一种新颖的标记合并方法,在图像分类、图像合成以及物体检测与分割任务中,其性能始终优于之前的标记合并和剪枝方法。ATC 通过自下而上的分层聚类来合并集群,无需引入额外的可学习参数。我们发现 ATC 在所有任务中都达到了最先进的性能,甚至在现成应用(即不进行微调)的情况下,其性能可以与之前最先进的技术相媲美。ATC 在低保留率情况下的应用尤其有效,在这种情况下,只有一小部分标记被保留,保持任务性能尤其困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信