BRDF-NeRF: Neural Radiance Fields with Optical Satellite Images and BRDF Modelling

Lulin Zhang, Ewelina Rupnik, Tri Dung Nguyen, Stéphane Jacquemoud, Yann Klinger
{"title":"BRDF-NeRF: Neural Radiance Fields with Optical Satellite Images and BRDF Modelling","authors":"Lulin Zhang, Ewelina Rupnik, Tri Dung Nguyen, Stéphane Jacquemoud, Yann Klinger","doi":"arxiv-2409.12014","DOIUrl":null,"url":null,"abstract":"Understanding the anisotropic reflectance of complex Earth surfaces from\nsatellite imagery is crucial for numerous applications. Neural radiance fields\n(NeRF) have become popular as a machine learning technique capable of deducing\nthe bidirectional reflectance distribution function (BRDF) of a scene from\nmultiple images. However, prior research has largely concentrated on applying\nNeRF to close-range imagery, estimating basic Microfacet BRDF models, which\nfall short for many Earth surfaces. Moreover, high-quality NeRFs generally\nrequire several images captured simultaneously, a rare occurrence in satellite\nimaging. To address these limitations, we propose BRDF-NeRF, developed to\nexplicitly estimate the Rahman-Pinty-Verstraete (RPV) model, a semi-empirical\nBRDF model commonly employed in remote sensing. We assess our approach using\ntwo datasets: (1) Djibouti, captured in a single epoch at varying viewing\nangles with a fixed Sun position, and (2) Lanzhou, captured over multiple\nepochs with different viewing angles and Sun positions. Our results, based on\nonly three to four satellite images for training, demonstrate that BRDF-NeRF\ncan effectively synthesize novel views from directions far removed from the\ntraining data and produce high-quality digital surface models (DSMs).","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the anisotropic reflectance of complex Earth surfaces from satellite imagery is crucial for numerous applications. Neural radiance fields (NeRF) have become popular as a machine learning technique capable of deducing the bidirectional reflectance distribution function (BRDF) of a scene from multiple images. However, prior research has largely concentrated on applying NeRF to close-range imagery, estimating basic Microfacet BRDF models, which fall short for many Earth surfaces. Moreover, high-quality NeRFs generally require several images captured simultaneously, a rare occurrence in satellite imaging. To address these limitations, we propose BRDF-NeRF, developed to explicitly estimate the Rahman-Pinty-Verstraete (RPV) model, a semi-empirical BRDF model commonly employed in remote sensing. We assess our approach using two datasets: (1) Djibouti, captured in a single epoch at varying viewing angles with a fixed Sun position, and (2) Lanzhou, captured over multiple epochs with different viewing angles and Sun positions. Our results, based on only three to four satellite images for training, demonstrate that BRDF-NeRF can effectively synthesize novel views from directions far removed from the training data and produce high-quality digital surface models (DSMs).
BRDF-NeRF:利用光学卫星图像和 BRDF 建模的神经辐射场
从卫星图像中了解复杂地球表面的各向异性反射率对许多应用都至关重要。神经辐射场(NeRF)作为一种机器学习技术,能够从多幅图像中推导出场景的双向反射分布函数(BRDF),因而广受欢迎。然而,之前的研究主要集中在将 NeRF 应用于近距离图像,估算基本的 Microfacet BRDF 模型,这对许多地球表面来说都是不够的。此外,高质量的 NeRF 通常需要同时捕获多幅图像,这在卫星成像中非常罕见。为了解决这些局限性,我们提出了 BRDF-NeRF,其开发目的是明确估算遥感中常用的半经验 BRDF 模型 Rahman-Pinty-Verstraete (RPV)。我们使用以下两个数据集对我们的方法进行了评估:(1) 吉布提数据集,该数据集是在太阳位置固定的情况下以不同视角拍摄的单次数据集;(2) 兰州数据集,该数据集是在不同视角和太阳位置的情况下拍摄的多个数据集。结果表明,BRDF-NeRF 能够有效地合成与训练数据相去甚远的新视图,并生成高质量的数字地表模型(DSM)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信