JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation

Sai Tanmay Reddy Chakkera, Aggelina Chatziagapi, Dimitris Samaras
{"title":"JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation","authors":"Sai Tanmay Reddy Chakkera, Aggelina Chatziagapi, Dimitris Samaras","doi":"arxiv-2409.12156","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for joint expression and audio-guided talking\nface generation. Recent approaches either struggle to preserve the speaker\nidentity or fail to produce faithful facial expressions. To address these\nchallenges, we propose a NeRF-based network. Since we train our network on\nmonocular videos without any ground truth, it is essential to learn\ndisentangled representations for audio and expression. We first learn audio\nfeatures in a self-supervised manner, given utterances from multiple subjects.\nBy incorporating a contrastive learning technique, we ensure that the learned\naudio features are aligned to the lip motion and disentangled from the muscle\nmotion of the rest of the face. We then devise a transformer-based architecture\nthat learns expression features, capturing long-range facial expressions and\ndisentangling them from the speech-specific mouth movements. Through\nquantitative and qualitative evaluation, we demonstrate that our method can\nsynthesize high-fidelity talking face videos, achieving state-of-the-art facial\nexpression transfer along with lip synchronization to unseen audio.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel method for joint expression and audio-guided talking face generation. Recent approaches either struggle to preserve the speaker identity or fail to produce faithful facial expressions. To address these challenges, we propose a NeRF-based network. Since we train our network on monocular videos without any ground truth, it is essential to learn disentangled representations for audio and expression. We first learn audio features in a self-supervised manner, given utterances from multiple subjects. By incorporating a contrastive learning technique, we ensure that the learned audio features are aligned to the lip motion and disentangled from the muscle motion of the rest of the face. We then devise a transformer-based architecture that learns expression features, capturing long-range facial expressions and disentangling them from the speech-specific mouth movements. Through quantitative and qualitative evaluation, we demonstrate that our method can synthesize high-fidelity talking face videos, achieving state-of-the-art facial expression transfer along with lip synchronization to unseen audio.
JEAN: 基于联合表情和音频引导的 NeRF 会说话人脸生成技术
我们介绍了一种联合表情和音频引导的谈话面孔生成新方法。最近的方法要么难以保持说话者的身份,要么无法生成忠实的面部表情。为了应对这些挑战,我们提出了一种基于 NeRF 的网络。由于我们的网络是在没有任何地面实况的单目视频上进行训练的,因此必须学习音频和表情的分离表征。通过采用对比学习技术,我们确保学习到的音频特征与嘴唇运动保持一致,并与面部其他部位的肌肉运动相分离。然后,我们设计了一种基于变压器的架构,该架构可学习表情特征,捕捉远距离面部表情,并将其与特定于语音的嘴部运动分离开来。通过定量和定性评估,我们证明了我们的方法可以合成高保真的会说话的面部视频,实现最先进的面部表情转移以及与未见音频的唇部同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信