GeneSpectra: a method for context-aware comparison of cell type gene expression across species

Yuyao Song, Irene Papatheodorou, Alvis Brazma
{"title":"GeneSpectra: a method for context-aware comparison of cell type gene expression across species","authors":"Yuyao Song, Irene Papatheodorou, Alvis Brazma","doi":"10.1101/2024.06.21.600109","DOIUrl":null,"url":null,"abstract":"Computational comparison of single cell expression profiles cross-species uncovers functional similarities and differences between cell types. Importantly, it offers the potential to refine evolutionary relationships based on gene expression. Current analysis strategies are limited by the strong hypothesis of ortholog conjecture, which implies that orthologs have similar cell type expression patterns. They also lose expression information from non-orthologs, making them inapplicable in practice for large evolutionary distances. To address these limitations, we devised a novel analytical framework, GeneSpectra, to robustly classify genes by their expression specificity and distribution across cell types. This framework allows for the generalization of the ortholog conjecture by evaluating the degree of ortholog class conservation. We utilise different gene classes to decode species effects on cross-species transcriptomics space and compare sequence conservation with expression specificity similarity across different types of orthologs. We develop contextualised cell type similarity measurements while considering species-unique genes and non-one-to-one orthologs. Finally, we consolidate gene classification results into a knowledge graph, GeneSpectraKG, allowing a hierarchical depiction of cell types and orthologous groups, while continuously integrating new data.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.21.600109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational comparison of single cell expression profiles cross-species uncovers functional similarities and differences between cell types. Importantly, it offers the potential to refine evolutionary relationships based on gene expression. Current analysis strategies are limited by the strong hypothesis of ortholog conjecture, which implies that orthologs have similar cell type expression patterns. They also lose expression information from non-orthologs, making them inapplicable in practice for large evolutionary distances. To address these limitations, we devised a novel analytical framework, GeneSpectra, to robustly classify genes by their expression specificity and distribution across cell types. This framework allows for the generalization of the ortholog conjecture by evaluating the degree of ortholog class conservation. We utilise different gene classes to decode species effects on cross-species transcriptomics space and compare sequence conservation with expression specificity similarity across different types of orthologs. We develop contextualised cell type similarity measurements while considering species-unique genes and non-one-to-one orthologs. Finally, we consolidate gene classification results into a knowledge graph, GeneSpectraKG, allowing a hierarchical depiction of cell types and orthologous groups, while continuously integrating new data.
GeneSpectra:一种对不同物种细胞类型基因表达进行上下文感知比较的方法
通过对跨物种单细胞表达谱进行计算比较,可以发现细胞类型之间的功能异同。重要的是,它为完善基于基因表达的进化关系提供了可能。目前的分析策略受到同源物猜想这一强假设的限制,该猜想意味着同源物具有相似的细胞类型表达模式。此外,它们还会丢失非同源物的表达信息,因此在实际应用中无法适用于大的进化距离。为了解决这些局限性,我们设计了一个新颖的分析框架--GeneSpectra,根据基因在不同细胞类型中的表达特异性和分布对基因进行稳健分类。该框架通过评估直向同源物类别的保护程度来推广直向同源物猜想。我们利用不同的基因类别来解码跨物种转录组学空间的物种效应,并比较不同类型直向同源物的序列保守性和表达特异性相似性。在考虑物种独特基因和非一对一直向同源物的同时,我们还开发了语境化细胞类型相似性测量方法。最后,我们将基因分类结果整合到一个知识图谱 GeneSpectraKG 中,允许对细胞类型和同源组进行分层描述,同时不断整合新数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信