Bifurcations in the Kuramoto model with external forcing and higher-order interactions

Guilherme S. Costa, Marcel Novaes, Marcus A. M. de Aguiar
{"title":"Bifurcations in the Kuramoto model with external forcing and higher-order interactions","authors":"Guilherme S. Costa, Marcel Novaes, Marcus A. M. de Aguiar","doi":"arxiv-2409.08736","DOIUrl":null,"url":null,"abstract":"Synchronization is an important phenomenon in a wide variety of systems\ncomprising interacting oscillatory units, whether natural (like neurons,\nbiochemical reactions, cardiac cells) or artificial (like metronomes, power\ngrids, Josephson junctions). The Kuramoto model provides a simple description\nof these systems and has been useful in their mathematical exploration. Here we\ninvestigate this model in the presence of two characteristics that may be\nimportant in applications: an external periodic influence and higher-order\ninteractions among the units. The combination of these ingredients leads to a\nvery rich bifurcation scenario in the dynamics of the order parameter that\ndescribes phase transitions. Our theoretical calculations are validated by\nnumerical simulations.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronization is an important phenomenon in a wide variety of systems comprising interacting oscillatory units, whether natural (like neurons, biochemical reactions, cardiac cells) or artificial (like metronomes, power grids, Josephson junctions). The Kuramoto model provides a simple description of these systems and has been useful in their mathematical exploration. Here we investigate this model in the presence of two characteristics that may be important in applications: an external periodic influence and higher-order interactions among the units. The combination of these ingredients leads to a very rich bifurcation scenario in the dynamics of the order parameter that describes phase transitions. Our theoretical calculations are validated by numerical simulations.
具有外部强迫和高阶相互作用的仓本模型的分岔
在由相互作用的振荡单元组成的各种系统中,无论是自然系统(如神经元、生化反应、心脏细胞)还是人工系统(如节拍器、电网、约瑟夫森结),同步都是一个重要现象。仓本模型提供了对这些系统的简单描述,并有助于对它们进行数学探索。在此,我们研究了该模型在应用中可能非常重要的两个特征:外部周期性影响和单元间的高阶相互作用。这些因素的结合导致了描述相变的阶次参数动态中非常丰富的分岔情景。数值模拟验证了我们的理论计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信