A laminar chaotic saddle within a turbulent attractor

Hibiki Kato, Miki U Kobayashi, Yoshitaka Saiki, James A. Yorke
{"title":"A laminar chaotic saddle within a turbulent attractor","authors":"Hibiki Kato, Miki U Kobayashi, Yoshitaka Saiki, James A. Yorke","doi":"arxiv-2409.08870","DOIUrl":null,"url":null,"abstract":"Intermittent switchings between weakly chaotic (laminar) and strongly chaotic\n(bursty) states are often observed in systems with high-dimensional chaotic\nattractors, such as fluid turbulence. They differ from the intermittency of a\nlow-dimensional system accompanied by the stability change of a fixed point or\na periodic orbit in that the intermittency of a high-dimensional system tends\nto appear in a wide range of parameters. This paper considers a case where the\nskeleton of a laminar state $L$ exists as a proper chaotic subset $S$ of a\nchaotic attractor $X$, that is, $S\\ \\subsetneq\\ X$. We characterize such a\nlaminar state $L$ by a chaotic saddle $S$, which is densely filled with\nperiodic orbits of different numbers of unstable directions. This study\ndemonstrates the presence of chaotic saddles underlying intermittency in fluid\nturbulence and phase synchronization. Furthermore, we confirm that chaotic\nsaddles persist for a wide range of parameters. Also, a kind of phase\nsynchronization turns out to occur in the turbulent model.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intermittent switchings between weakly chaotic (laminar) and strongly chaotic (bursty) states are often observed in systems with high-dimensional chaotic attractors, such as fluid turbulence. They differ from the intermittency of a low-dimensional system accompanied by the stability change of a fixed point or a periodic orbit in that the intermittency of a high-dimensional system tends to appear in a wide range of parameters. This paper considers a case where the skeleton of a laminar state $L$ exists as a proper chaotic subset $S$ of a chaotic attractor $X$, that is, $S\ \subsetneq\ X$. We characterize such a laminar state $L$ by a chaotic saddle $S$, which is densely filled with periodic orbits of different numbers of unstable directions. This study demonstrates the presence of chaotic saddles underlying intermittency in fluid turbulence and phase synchronization. Furthermore, we confirm that chaotic saddles persist for a wide range of parameters. Also, a kind of phase synchronization turns out to occur in the turbulent model.
湍流吸引器中的层状混沌鞍座
在流体湍流等具有高维混沌引力的系统中,经常可以观察到弱混沌(层流)和强混沌(突发)状态之间的间歇切换。它们与低维系统中伴随着固定点或周期轨道稳定性变化的间歇性不同,高维系统的间歇性往往出现在很宽的参数范围内。本文考虑了层态$L$的骨架作为异相吸引子$X$的适当混沌子集$S$存在的情况,即$S\subsetneq\ X$。我们用混沌鞍$S$来描述这样的混沌态$L$,鞍$S$密集地充满了不同数目的不稳定方向的周期轨道。这项研究证明了混沌鞍的存在是流体扰动和相位同步间歇性的基础。此外,我们还证实混沌鞍在很大参数范围内持续存在。此外,在湍流模型中还出现了一种相位同步现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信