A curious dynamical system in the plane

Stefan Steinerberger, Tony Zeng
{"title":"A curious dynamical system in the plane","authors":"Stefan Steinerberger, Tony Zeng","doi":"arxiv-2409.08961","DOIUrl":null,"url":null,"abstract":"For any irrational $\\alpha > 0$ and any initial value $z_{-1} \\in\n\\mathbb{C}$, we define a sequence of complex numbers $(z_n)_{n=0}^{\\infty}$ as\nfollows: $z_n$ is $z_{n-1} + e^{2 \\pi i \\alpha n}$ or $z_{n-1} - e^{2 \\pi i\n\\alpha n}$, whichever has the smaller absolute value. If both numbers have the\nsame absolute value, the sequence terminates at $z_{n-1}$ but this happens\nrarely. This dynamical system has astonishingly intricate behavior: the choice\nof signs in $z_{n-1} \\pm e^{2 \\pi i \\alpha n}$ appears to eventually become\nperiodic (though the period can be large). We prove that if one observes\nperiodic signs for a sufficiently long time (depending on $z_{-1}, \\alpha$),\nthe signs remain periodic for all time. The surprising complexity of the system\nis illustrated through examples.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"188 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For any irrational $\alpha > 0$ and any initial value $z_{-1} \in \mathbb{C}$, we define a sequence of complex numbers $(z_n)_{n=0}^{\infty}$ as follows: $z_n$ is $z_{n-1} + e^{2 \pi i \alpha n}$ or $z_{n-1} - e^{2 \pi i \alpha n}$, whichever has the smaller absolute value. If both numbers have the same absolute value, the sequence terminates at $z_{n-1}$ but this happens rarely. This dynamical system has astonishingly intricate behavior: the choice of signs in $z_{n-1} \pm e^{2 \pi i \alpha n}$ appears to eventually become periodic (though the period can be large). We prove that if one observes periodic signs for a sufficiently long time (depending on $z_{-1}, \alpha$), the signs remain periodic for all time. The surprising complexity of the system is illustrated through examples.
平面上的奇特动力系统
对于任意无理 $\alpha > 0$ 和任意初始值 $z_{-1} \in\mathbb{C}$,我们定义复数序列 $(z_n)_{n=0}^{infty}$ 如下:$z_n$ 是 $z_{n-1} + e^{2 \pi i \alpha n}$ 或 $z_{n-1} - e^{2 \pi i \alpha n}$,以绝对值较小者为准。如果两个数的绝对值相同,则序列终止于 $z_{n-1}$,但这种情况很少发生。这个动力系统有着惊人的复杂行为:$z_{n-1} \pm e^{2 \pi i \alpha n}$中符号的选择似乎最终成为周期性的(尽管周期可能很大)。我们证明,如果观察到周期性符号的时间足够长(取决于 $z_{-1}, \alpha$),那么符号在所有时间内都会保持周期性。我们将通过实例来说明这个系统惊人的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信