Generalized Poisson random variable: its distributional properties and actuarial applications

IF 1.5 Q3 BUSINESS, FINANCE
Pouya Faroughi, Shu Li, Jiandong Ren
{"title":"Generalized Poisson random variable: its distributional properties and actuarial applications","authors":"Pouya Faroughi, Shu Li, Jiandong Ren","doi":"10.1017/s1748499524000198","DOIUrl":null,"url":null,"abstract":"Generalized Poisson (GP) distribution was introduced in Consul &amp; Jain ((1973). <jats:italic>Technometrics</jats:italic>, 15(4), 791–799.). Since then it has found various applications in actuarial science and other areas. In this paper, we focus on the distributional properties of GP and its related distributions. In particular, we study the distributional properties of distributions in the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1748499524000198_inline1.png\"/> <jats:tex-math> $\\mathcal{H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> family, which includes GP and generalized negative binomial distributions as special cases. We demonstrate that the moment and size-biased transformations of distributions within the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S1748499524000198_inline2.png\"/> <jats:tex-math> $\\mathcal{H}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> family remain in the same family, which significantly extends the results presented in Ambagaspitiya &amp; Balakrishnan ((1994). <jats:italic>ASTINBulletin: the Journal of the IAA</jats:italic>, 24(2), 255–263.) and Ambagaspitiya ((1995). <jats:italic>Insurance Mathematics and Economics</jats:italic>, 2(16), 107–127.). Such findings enable us to provide recursive formulas for evaluating risk measures, such as Value-at-Risk and conditional tail expectation of the compound GP distributions. In addition, we show that the risk measures can be calculated by making use of transform methods, such as fast Fourier transform. In fact, the transformation method showed a remarkable time advantage over the recursive method. We numerically compare the risk measures of the compound sums when the primary distributions are Poisson and GP. The results illustrate the model risk for the loss frequency distribution.","PeriodicalId":44135,"journal":{"name":"Annals of Actuarial Science","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Actuarial Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s1748499524000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized Poisson (GP) distribution was introduced in Consul & Jain ((1973). Technometrics, 15(4), 791–799.). Since then it has found various applications in actuarial science and other areas. In this paper, we focus on the distributional properties of GP and its related distributions. In particular, we study the distributional properties of distributions in the $\mathcal{H}$ family, which includes GP and generalized negative binomial distributions as special cases. We demonstrate that the moment and size-biased transformations of distributions within the $\mathcal{H}$ family remain in the same family, which significantly extends the results presented in Ambagaspitiya & Balakrishnan ((1994). ASTINBulletin: the Journal of the IAA, 24(2), 255–263.) and Ambagaspitiya ((1995). Insurance Mathematics and Economics, 2(16), 107–127.). Such findings enable us to provide recursive formulas for evaluating risk measures, such as Value-at-Risk and conditional tail expectation of the compound GP distributions. In addition, we show that the risk measures can be calculated by making use of transform methods, such as fast Fourier transform. In fact, the transformation method showed a remarkable time advantage over the recursive method. We numerically compare the risk measures of the compound sums when the primary distributions are Poisson and GP. The results illustrate the model risk for the loss frequency distribution.
广义泊松随机变量:其分布特性和精算应用
广义泊松(GP)分布在 Consul & Jain((1973).Technometrics,15(4),791-799)。此后,它在精算学和其他领域得到了广泛应用。本文重点研究 GP 及其相关分布的分布特性。特别是,我们研究了 $\mathcal{H}$ 系列分布的分布性质,其中 GP 和广义负二项分布是特例。我们证明了 $mathcal{H}$ 族中分布的矩和大小偏置变换仍在同一族中,这大大扩展了 Ambagaspitiya & Balakrishnan((1994).ASTINBulletin: the Journal of the IAA, 24(2), 255-263.) 和 Ambagaspitiya ((1995).保险数学与经济学》,2(16),107-127)。这些发现使我们能够提供评估风险度量的递归公式,如风险价值和复合 GP 分布的条件尾期望。此外,我们还展示了利用快速傅立叶变换等变换方法可以计算风险度量。事实上,与递归方法相比,变换方法具有显著的时间优势。我们对主分布为泊松和 GP 时复合和的风险度量进行了数值比较。结果说明了损失频率分布的模型风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
5.90%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信