Prediction of Protein Half-lives from Amino Acid Sequences by Protein Language Models

Tatsuya Sagawa, Eisuke Kanao, Kosuke Ogata, Koshi Imami, Yasushi Ishihama
{"title":"Prediction of Protein Half-lives from Amino Acid Sequences by Protein Language Models","authors":"Tatsuya Sagawa, Eisuke Kanao, Kosuke Ogata, Koshi Imami, Yasushi Ishihama","doi":"10.1101/2024.09.10.612367","DOIUrl":null,"url":null,"abstract":"We developed a protein half-life prediction model, PLTNUM, based on a protein language model using an extensive dataset of protein sequences and protein half-lives from the NIH3T3 mouse embryo fibroblast cell line as a training set. PLTNUM achieved an accuracy of 71% on validation data and showed robust performance with an ROC of 0.73 when applied to a human cell line dataset. By incorporating Shapley Additive Explanations (SHAP) into PLTNUM, we identified key factors contributing to shorter protein half-lives, such as cysteine-containing domains and intrinsically disordered regions. Using SHAP values, PLTNUM can also predict potential degron sequences that shorten protein half-lives. This model provides a platform for elucidating the sequence dependency of protein half-lives, while the uncertainty in predictions underscores the importance of biological context in influencing protein half-lives.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a protein half-life prediction model, PLTNUM, based on a protein language model using an extensive dataset of protein sequences and protein half-lives from the NIH3T3 mouse embryo fibroblast cell line as a training set. PLTNUM achieved an accuracy of 71% on validation data and showed robust performance with an ROC of 0.73 when applied to a human cell line dataset. By incorporating Shapley Additive Explanations (SHAP) into PLTNUM, we identified key factors contributing to shorter protein half-lives, such as cysteine-containing domains and intrinsically disordered regions. Using SHAP values, PLTNUM can also predict potential degron sequences that shorten protein half-lives. This model provides a platform for elucidating the sequence dependency of protein half-lives, while the uncertainty in predictions underscores the importance of biological context in influencing protein half-lives.
通过蛋白质语言模型从氨基酸序列预测蛋白质半衰期
我们开发了一种蛋白质半衰期预测模型 PLTNUM,该模型基于蛋白质语言模型,使用来自 NIH3T3 小鼠胚胎成纤维细胞系的大量蛋白质序列和蛋白质半衰期数据集作为训练集。PLTNUM 在验证数据上的准确率达到了 71%,在应用于人类细胞系数据集时,其 ROC 为 0.73,表现出强劲的性能。通过在 PLTNUM 中加入 Shapley Additive Explanations (SHAP),我们确定了导致蛋白质半衰期缩短的关键因素,如含半胱氨酸结构域和内在无序区。利用 SHAP 值,PLTNUM 还能预测缩短蛋白质半衰期的潜在降解子序列。该模型为阐明蛋白质半衰期的序列依赖性提供了一个平台,而预测结果的不确定性则强调了生物背景对影响蛋白质半衰期的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信