Katok's entropy conjecture near real and complex hyperbolic metrics

Tristan Humbert
{"title":"Katok's entropy conjecture near real and complex hyperbolic metrics","authors":"Tristan Humbert","doi":"arxiv-2409.11197","DOIUrl":null,"url":null,"abstract":"We show that, given a real or complex hyperbolic metric $g_0$ on a closed\nmanifold $M$ of dimension $n\\geq 3$, there exists a neighborhood $\\mathcal U$\nof $g_0$ in the space of negatively curved metrics such that for any $g\\in\n\\mathcal U$, the topological entropy and Liouville entropy of $g$ coincide if\nand only if $g$ and $g_0$ are homothetic. This provides a partial answer to\nKatok's entropy rigidity conjecture. As a direct consequence of our theorem, we\nobtain a local rigidity result of the hyperbolic rank near complex hyperbolic\nmetrics.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We show that, given a real or complex hyperbolic metric $g_0$ on a closed manifold $M$ of dimension $n\geq 3$, there exists a neighborhood $\mathcal U$ of $g_0$ in the space of negatively curved metrics such that for any $g\in \mathcal U$, the topological entropy and Liouville entropy of $g$ coincide if and only if $g$ and $g_0$ are homothetic. This provides a partial answer to Katok's entropy rigidity conjecture. As a direct consequence of our theorem, we obtain a local rigidity result of the hyperbolic rank near complex hyperbolic metrics.
实双曲和复双曲度量附近的卡托克熵猜想
我们证明,给定维数为$n\geq 3$的封闭manifold $M$上的实双曲或复双曲度量$g_0$,在负弯曲度量空间中存在一个$g_0$的邻域$mathcal U$,对于任意$g\in\mathcal U$,当且仅当$g$和$g_0$同调时,$g$的拓扑熵和Liouville熵重合。这为卡托克的熵刚性猜想提供了部分答案。作为我们定理的直接结果,我们得到了复双曲度量附近双曲秩的局部刚性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信