Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition

Maxim Gurevich, Chuijia Wang
{"title":"Parabolic recursions for Kazhdan–Lusztig polynomials and the hypercube decomposition","authors":"Maxim Gurevich, Chuijia Wang","doi":"10.1007/s00029-024-00972-0","DOIUrl":null,"url":null,"abstract":"<p>We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of <span>\\(S_n\\)</span>, and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of <i>q</i>-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00972-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We employ general parabolic recursion methods to demonstrate the recently devised hypercube formula for Kazhdan-Lusztig polynomials of \(S_n\), and establish its generalization to the full setting of a finite Coxeter system through algebraic proof. We introduce procedures for positive decompositions of q-derived Kazhdan–Lusztig polynomials within this setting, that utilize classical Hecke algebra positivity phenomena of Dyer-Lehrer and Grojnowski–Haiman. This leads to a distinct algorithmic approach to the subject, based on induction from a parabolic subgroup. We propose suitable weak variants of the combinatorial invariance conjecture and verify their validity for permutation groups.

卡兹丹-卢兹蒂格多项式的抛物递推和超立方分解
我们采用一般抛物线递推方法来证明最近设计的 \(S_n\) 的 Kazhdan-Lusztig 多项式的超立方公式,并通过代数证明将其推广到有限 Coxeter 系统的完整环境中。我们利用戴尔-雷勒(Dyer-Lehrer)和格罗伊诺斯基-海曼(Grojnowski-Haiman)的经典赫克代数正分解现象,引入了在此背景下对 q 派生卡兹丹-卢兹蒂格多项式进行正分解的程序。这导致了一种基于抛物面子群归纳的独特算法方法。我们提出了组合不变性猜想的合适弱变体,并验证了它们对置换群的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信