Neural basis of collective social behavior during environmental challenge

Tara Raam, Qin Li, Linfan Gu, Gabrielle Elagio, Kayla Y Lim, Xingjian Zhang, Stephanie M Correa, Weizhe Hong
{"title":"Neural basis of collective social behavior during environmental challenge","authors":"Tara Raam, Qin Li, Linfan Gu, Gabrielle Elagio, Kayla Y Lim, Xingjian Zhang, Stephanie M Correa, Weizhe Hong","doi":"10.1101/2024.09.17.613378","DOIUrl":null,"url":null,"abstract":"Humans and animals have a remarkable capacity to collectively coordinate their behavior to respond to environmental challenges. However, the underlying neurobiology remains poorly understood. Here, we found that groups of mice self-organize into huddles at cold ambient temperature during the thermal challenge assay. We found that mice make active (self-initiated) and passive (partner-initiated) decisions to enter or exit a huddle. Using microendoscopic calcium imaging, we found that active and passive decisions are encoded distinctly within the dorsomedial prefrontal cortex (dmPFC). Silencing dmPFC activity in some mice reduced their active decision-making, but also induced a compensatory increase in active decisions by non-manipulated partners, conserving the group's overall huddle time. These findings reveal how collective behavior is implemented in neurobiological mechanisms to meet homeostatic needs during environmental challenges.","PeriodicalId":501581,"journal":{"name":"bioRxiv - Neuroscience","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Humans and animals have a remarkable capacity to collectively coordinate their behavior to respond to environmental challenges. However, the underlying neurobiology remains poorly understood. Here, we found that groups of mice self-organize into huddles at cold ambient temperature during the thermal challenge assay. We found that mice make active (self-initiated) and passive (partner-initiated) decisions to enter or exit a huddle. Using microendoscopic calcium imaging, we found that active and passive decisions are encoded distinctly within the dorsomedial prefrontal cortex (dmPFC). Silencing dmPFC activity in some mice reduced their active decision-making, but also induced a compensatory increase in active decisions by non-manipulated partners, conserving the group's overall huddle time. These findings reveal how collective behavior is implemented in neurobiological mechanisms to meet homeostatic needs during environmental challenges.
环境挑战中集体社会行为的神经基础
人类和动物有一种非凡的能力,即集体协调行为以应对环境挑战。然而,人们对其潜在的神经生物学仍然知之甚少。在这里,我们发现,在热挑战实验中,小鼠群体会在寒冷的环境温度下自我组织成群。我们发现,小鼠会主动(自己发起)和被动(同伴发起)决定进入或退出抱团。利用显微内窥镜钙成像技术,我们发现主动和被动决策在背内侧前额叶皮层(dmPFC)中编码截然不同。抑制某些小鼠的前额叶皮质(dmPFC)活动会减少它们的主动决策,但同时也会诱导未受操纵的伙伴补偿性地增加主动决策,从而节省整个群体的合群时间。这些发现揭示了集体行为是如何在神经生物学机制中实现的,以满足在环境挑战中的平衡需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信