Rare earth oxide promoted Ru/Al2O3 dual function materials for CO2 capture and methanation: An operando DRIFTS and TGA study

Lizbeth Moreno Bravo, Frederic C. Meunier, Jan Kopyscinski
{"title":"Rare earth oxide promoted Ru/Al2O3 dual function materials for CO2 capture and methanation: An operando DRIFTS and TGA study","authors":"Lizbeth Moreno Bravo, Frederic C. Meunier, Jan Kopyscinski","doi":"10.1016/j.apcatb.2024.124591","DOIUrl":null,"url":null,"abstract":"Dual-function materials (DFMs) combine sorbent and catalytic components to perform selective CO capture and subsequent hydrogenation. This study explores the performance of rare-earth oxides (REOs) as CO adsorption sites on Ru/AlO. REOs increase CO uptake by upwards of +60 % by enhancing the overall catalyst surface basicity and favoring metal–support interactions. Thermogravimetric analysis during CO adsorption-hydrogenation cycles exhibited significant catalytic activity and enhanced stability of Ru-REO/AlO at temperatures as low as 200 °C. This leads to methane production of 50–85 µmol g, surpassing recently reported values obtained for alkali and alkali-earth promoted Ru-based materials operated at 250 °C. The highest performing studied DFM, RuNdO/AlO, achieved 85 % CO capture efficiency and steadily produced methane in cyclic operation (+120 % CO uptake relative to Ru/AlO). DRIFTS revealed that the dominant mechanism for methane formation is the hydrogenation of ruthenium carbonyls, which are stabilized by REOs. Upon CO exposure, surface carbonates and bicarbonate species form more abundantly on DFMs than on Ru/AlO. This confirms that REOs enhance the adsorption and retention of carbonates, which generate additional promoter-related reaction pathways during low-temperature hydrogenation. These findings are crucial in the advancement of sustainable, wider operation range carbon capture and utilization technologies.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-function materials (DFMs) combine sorbent and catalytic components to perform selective CO capture and subsequent hydrogenation. This study explores the performance of rare-earth oxides (REOs) as CO adsorption sites on Ru/AlO. REOs increase CO uptake by upwards of +60 % by enhancing the overall catalyst surface basicity and favoring metal–support interactions. Thermogravimetric analysis during CO adsorption-hydrogenation cycles exhibited significant catalytic activity and enhanced stability of Ru-REO/AlO at temperatures as low as 200 °C. This leads to methane production of 50–85 µmol g, surpassing recently reported values obtained for alkali and alkali-earth promoted Ru-based materials operated at 250 °C. The highest performing studied DFM, RuNdO/AlO, achieved 85 % CO capture efficiency and steadily produced methane in cyclic operation (+120 % CO uptake relative to Ru/AlO). DRIFTS revealed that the dominant mechanism for methane formation is the hydrogenation of ruthenium carbonyls, which are stabilized by REOs. Upon CO exposure, surface carbonates and bicarbonate species form more abundantly on DFMs than on Ru/AlO. This confirms that REOs enhance the adsorption and retention of carbonates, which generate additional promoter-related reaction pathways during low-temperature hydrogenation. These findings are crucial in the advancement of sustainable, wider operation range carbon capture and utilization technologies.
稀土氧化物促进的 Ru/Al2O3 双功能材料用于二氧化碳捕获和甲烷化:一项操作性 DRIFTS 和 TGA 研究
双功能材料 (DFM) 结合了吸附剂和催化元件,可进行选择性一氧化碳捕获和随后的氢化。本研究探讨了稀土氧化物 (REO) 作为 Ru/AlO 上 CO 吸附位点的性能。稀土氧化物提高了催化剂表面的整体碱性,有利于金属与支撑物之间的相互作用,从而将二氧化碳的吸收率提高了 60% 以上。在 CO 吸附-加氢循环过程中进行的热重分析表明,Ru-REO/AlO 在低至 200 °C 的温度下具有显著的催化活性和更高的稳定性。这使得甲烷产量达到 50-85 µmol g,超过了最近报道的在 250 °C 下运行的碱和碱土促进 Ru 基材料所获得的数值。所研究的性能最高的 DFM(RuNdO/AlO)达到了 85% 的一氧化碳捕集效率,并在循环操作中稳定地生产甲烷(相对于 Ru/AlO 的一氧化碳吸收率 +120%)。DRIFTS 显示,甲烷形成的主要机制是由 REOs 稳定的钌羰基的氢化作用。与 Ru/AlO 相比,暴露于 CO 时,DFMs 上形成的表面碳酸盐和碳酸氢盐物种更多。这证实了 REO 可增强碳酸盐的吸附和保留,从而在低温氢化过程中产生更多与促进剂相关的反应途径。这些发现对于推进可持续的、操作范围更广的碳捕获和利用技术至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信