{"title":"Selective switching hydrogenation products of 5-hydroxymethylfurfural at high substrate concentrations by regulating Pd-MgO interactions","authors":"Mingxin Lv, Liyuan Huai, Guoxin Chen, Xi Zhao, Chunlin Chen, Shenghu Zhou, Jian Zhang","doi":"10.1016/j.apcatb.2024.124578","DOIUrl":null,"url":null,"abstract":"Controlling the selective activation of one or some functional groups as desired is still a challenge in hydrogenation, especially at high substrate concentrations. Herein, Pd-MgO interfaces over AlO were finely regulated for efficiently selective hydrogenation of furan ring in 5-hydroxymethylfurfural (HMF) to produce 5-hydroxymethyltetrahydro-2-furaldehyde (5-HMTHFF) or total hydrogenation to 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), also inhibiting side reaction. The Pd-MgO/AlO with 12.0 wt% of MgO selectively hydrogenates the furan rings with a 5-HMTHFF yield of 82.4 % while that with 2.0 wt% of MgO totally hydrogenates HMF with a DHMTHF yield of 96.2 % at high substrate concentrations (400 mM). Characterizations and DFT calculations demonstrated that oligomeric MgO species suppress the agglomeration of Pd nanoparticles and strengthen HMF adsorption, consequently promoting total hydrogenation. Furthermore, Pd-MgO sites between the crystallized MgO and Pd metal favored tilted adsorption on the interface and weakened the activation of the CO bond, consequently selectively producing 5-HMTHFF.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling the selective activation of one or some functional groups as desired is still a challenge in hydrogenation, especially at high substrate concentrations. Herein, Pd-MgO interfaces over AlO were finely regulated for efficiently selective hydrogenation of furan ring in 5-hydroxymethylfurfural (HMF) to produce 5-hydroxymethyltetrahydro-2-furaldehyde (5-HMTHFF) or total hydrogenation to 2,5-bis(hydroxymethyl)tetrahydrofuran (BHMTHF), also inhibiting side reaction. The Pd-MgO/AlO with 12.0 wt% of MgO selectively hydrogenates the furan rings with a 5-HMTHFF yield of 82.4 % while that with 2.0 wt% of MgO totally hydrogenates HMF with a DHMTHF yield of 96.2 % at high substrate concentrations (400 mM). Characterizations and DFT calculations demonstrated that oligomeric MgO species suppress the agglomeration of Pd nanoparticles and strengthen HMF adsorption, consequently promoting total hydrogenation. Furthermore, Pd-MgO sites between the crystallized MgO and Pd metal favored tilted adsorption on the interface and weakened the activation of the CO bond, consequently selectively producing 5-HMTHFF.