Radical factorization in higher dimension

Dario Spirito
{"title":"Radical factorization in higher dimension","authors":"Dario Spirito","doi":"arxiv-2409.10219","DOIUrl":null,"url":null,"abstract":"We generalize the theory of radical factorization from almost Dedekind domain\nto strongly discrete Pr\\\"ufer domains; we show that, for a fixed subset $X$ of\nmaximal ideals, the finitely generated ideals with $\\mathcal{V}(I)\\subseteq X$\nhave radical factorization if and only if $X$ contains no critical maximal\nideals with respect to $X$. We use these notions to prove that in the group\n$\\mathrm{Inv}(D)$ of the invertible ideals of a strongly discrete Pr\\\"ufer\ndomains is often free: in particular, we show it when the spectrum of $D$ is\nNoetherian or when $D$ is a ring of integer-valued polynomials on a subset over\na Dedekind domain.","PeriodicalId":501475,"journal":{"name":"arXiv - MATH - Commutative Algebra","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Commutative Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the theory of radical factorization from almost Dedekind domain to strongly discrete Pr\"ufer domains; we show that, for a fixed subset $X$ of maximal ideals, the finitely generated ideals with $\mathcal{V}(I)\subseteq X$ have radical factorization if and only if $X$ contains no critical maximal ideals with respect to $X$. We use these notions to prove that in the group $\mathrm{Inv}(D)$ of the invertible ideals of a strongly discrete Pr\"ufer domains is often free: in particular, we show it when the spectrum of $D$ is Noetherian or when $D$ is a ring of integer-valued polynomials on a subset over a Dedekind domain.
高维度辐射因式分解
我们将基元因式分解理论从几乎戴德金域推广到强离散的 Pr\"ufer 域;我们证明,对于最大理想的固定子集 $X$,当且仅当 $X$ 不包含关于 $X$ 的临界最大理想时,具有 $\mathcal{V}(I)\subseteq X$ 的有限生成理想具有基元因式分解。我们利用这些概念来证明,在强离散 Pr\"ufer 域的可逆ideal 的组$\mathrm{Inv}(D)$ 中,经常是自由的:特别是,当 $D$ 的谱是诺特的或当 $D$ 是一个 Dedekind 域上的子集上的整值多项式环时,我们证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信