Saireudee Chaturantabut, Sydney Oliver, Dennie T. Frederick, Jiwan Kim, Foxy P Robinson, Alessandro Sinopoli, Tian-Yu Song, Diego J Rodriguez, Liang Chang, Devishi Kesar, Yao He, Meilani Ching, Ruvimbo Dzvurumi, Adel Atari, Yuen-Yi Tseng, Nabeel Bardeesy, William R Sellers
{"title":"Identification of potent biparatopic antibodies targeting FGFR2 fusion driven cholangiocarcinoma.","authors":"Saireudee Chaturantabut, Sydney Oliver, Dennie T. Frederick, Jiwan Kim, Foxy P Robinson, Alessandro Sinopoli, Tian-Yu Song, Diego J Rodriguez, Liang Chang, Devishi Kesar, Yao He, Meilani Ching, Ruvimbo Dzvurumi, Adel Atari, Yuen-Yi Tseng, Nabeel Bardeesy, William R Sellers","doi":"10.1101/2024.09.16.613045","DOIUrl":null,"url":null,"abstract":"Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, the rate and durability of response are limited due to the emergence of resistance, typically involving acquired FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we report the development of biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of standard bivalent monoparatopic antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies that target distinct epitope pairs along the FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as new treatment options for patients with FGFR2-altered cholangiocarcinoma.","PeriodicalId":501233,"journal":{"name":"bioRxiv - Cancer Biology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.16.613045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, the rate and durability of response are limited due to the emergence of resistance, typically involving acquired FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we report the development of biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of standard bivalent monoparatopic antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies that target distinct epitope pairs along the FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as new treatment options for patients with FGFR2-altered cholangiocarcinoma.