{"title":"Fault location and type identification method for current and voltage sensors in traction rectifiers","authors":"Yunjun Yu, Yunquan Song, Hongwei Tao","doi":"10.1007/s43236-024-00916-z","DOIUrl":null,"url":null,"abstract":"<p>The reliability of rectifiers is regarded as one of the most important factors in traction systems. Unexpected faults occurring in sensors can degrade the performance and lead to secondary faults. Accordingly, a sensor fault diagnosis method is proposed in this paper. It can locate faults and identify fault types. Three high-incidence fault types in current and voltage sensors have been taken into consideration. Only the current residual is needed in the process of fault diagnosis. No additional sensors are required in this method. First, a traction rectifier model is developed. Then, a grid current estimator is constructed, the residual is acquired and applied to fault detection. Next, the residual is analyzed under different kinds of sensor faults. Fault diagnosis functions are constructed and the faults can be diagnosed. Finally, an experiment test is processed to demonstrate the effectiveness of the proposed method.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"2 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00916-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The reliability of rectifiers is regarded as one of the most important factors in traction systems. Unexpected faults occurring in sensors can degrade the performance and lead to secondary faults. Accordingly, a sensor fault diagnosis method is proposed in this paper. It can locate faults and identify fault types. Three high-incidence fault types in current and voltage sensors have been taken into consideration. Only the current residual is needed in the process of fault diagnosis. No additional sensors are required in this method. First, a traction rectifier model is developed. Then, a grid current estimator is constructed, the residual is acquired and applied to fault detection. Next, the residual is analyzed under different kinds of sensor faults. Fault diagnosis functions are constructed and the faults can be diagnosed. Finally, an experiment test is processed to demonstrate the effectiveness of the proposed method.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.