Long Jiang,Yang Zhou,Wang Miao,Hongda Zhu,Ningyuan Zou,Yu Tian,Hanbo Pan,Weiqiu Jin,Jia Huang,Qingquan Luo
{"title":"Artificial intelligence-assisted quantitative CT parameters in predicting the degree of risk of solitary pulmonary nodules.","authors":"Long Jiang,Yang Zhou,Wang Miao,Hongda Zhu,Ningyuan Zou,Yu Tian,Hanbo Pan,Weiqiu Jin,Jia Huang,Qingquan Luo","doi":"10.1080/07853890.2024.2405075","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\r\nArtificial intelligence (AI) shows promise for evaluating solitary pulmonary nodules (SPNs) on computed tomography (CT). Accurately determining cancer invasiveness can guide treatment. We aimed to investigate quantitative CT parameters for invasiveness prediction.\r\n\r\nMETHODS\r\nPatients with stage 0-IB NSCLC after surgical resection were retrospectively analysed. Preoperative CTs were evaluated with specialized software for nodule segmentation and CT quantification. Pathology was the reference for invasiveness. Univariate and multivariate logistic regression assessed predictors of high-risk SPN.\r\n\r\nRESULTS\r\nThree hundred and fifty-five SPN were included. On multivariate analysis, CT value mean and nodule type (ground glass opacity vs. solid) were independent predictors of high-risk SPN. The area under the curve (AUC) was 0.811 for identifying high-risk nodules.\r\n\r\nCONCLUSIONS\r\nQuantitative CT measures and nodule type correlated with invasiveness. Software-based CT assessment shows potential for noninvasive prediction to guide extent of resection. Further prospective validation is needed, including comparison with benign nodules.","PeriodicalId":8371,"journal":{"name":"Annals of medicine","volume":"13 1","pages":"2405075"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07853890.2024.2405075","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
INTRODUCTION
Artificial intelligence (AI) shows promise for evaluating solitary pulmonary nodules (SPNs) on computed tomography (CT). Accurately determining cancer invasiveness can guide treatment. We aimed to investigate quantitative CT parameters for invasiveness prediction.
METHODS
Patients with stage 0-IB NSCLC after surgical resection were retrospectively analysed. Preoperative CTs were evaluated with specialized software for nodule segmentation and CT quantification. Pathology was the reference for invasiveness. Univariate and multivariate logistic regression assessed predictors of high-risk SPN.
RESULTS
Three hundred and fifty-five SPN were included. On multivariate analysis, CT value mean and nodule type (ground glass opacity vs. solid) were independent predictors of high-risk SPN. The area under the curve (AUC) was 0.811 for identifying high-risk nodules.
CONCLUSIONS
Quantitative CT measures and nodule type correlated with invasiveness. Software-based CT assessment shows potential for noninvasive prediction to guide extent of resection. Further prospective validation is needed, including comparison with benign nodules.
期刊介绍:
Annals of Medicine is one of the world’s leading general medical review journals, boasting an impact factor of 5.435. It presents high-quality topical review articles, commissioned by the Editors and Editorial Committee, as well as original articles. The journal provides the current opinion on recent developments across the major medical specialties, with a particular focus on internal medicine. The peer-reviewed content of the journal keeps readers updated on the latest advances in the understanding of the pathogenesis of diseases, and in how molecular medicine and genetics can be applied in daily clinical practice.