Non‐causal and non‐invertible ARMA models: Identification, estimation and application in equity portfolios

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alain Hecq, Daniel Velasquez‐Gaviria
{"title":"Non‐causal and non‐invertible ARMA models: Identification, estimation and application in equity portfolios","authors":"Alain Hecq, Daniel Velasquez‐Gaviria","doi":"10.1111/jtsa.12776","DOIUrl":null,"url":null,"abstract":"The mixed causal‐non‐causal invertible‐non‐invertible autoregressive moving‐average (MARMA) models have the advantage of incorporating roots inside the unit circle, thus adjusting the dynamics of financial returns that depend on future expectations. This article introduces new techniques for estimating, identifying and simulating MARMA models. Although the estimation of the parameters is done using second‐order moments, the identification relies on the existence of high‐order dynamics, captured in the high‐order spectral densities and the correlation of the squared residuals. A comprehensive Monte Carlo study demonstrated the robust performance of our estimation and identification methods. We propose an empirical application to 24 portfolios from emerging markets based on the factors: size, book‐to‐market, profitability, investment and momentum. All portfolios exhibited forward‐looking behavior, showing significant non‐causal and non‐invertible dynamics. Moreover, we found the residuals to be uncorrelated and independent, with no trace of conditional volatility.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12776","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The mixed causal‐non‐causal invertible‐non‐invertible autoregressive moving‐average (MARMA) models have the advantage of incorporating roots inside the unit circle, thus adjusting the dynamics of financial returns that depend on future expectations. This article introduces new techniques for estimating, identifying and simulating MARMA models. Although the estimation of the parameters is done using second‐order moments, the identification relies on the existence of high‐order dynamics, captured in the high‐order spectral densities and the correlation of the squared residuals. A comprehensive Monte Carlo study demonstrated the robust performance of our estimation and identification methods. We propose an empirical application to 24 portfolios from emerging markets based on the factors: size, book‐to‐market, profitability, investment and momentum. All portfolios exhibited forward‐looking behavior, showing significant non‐causal and non‐invertible dynamics. Moreover, we found the residuals to be uncorrelated and independent, with no trace of conditional volatility.
非因果和非可逆 ARMA 模型:股票投资组合中的识别、估计和应用
混合因果-非因果可逆-非可逆自回归移动平均(MARMA)模型的优点是可以将根纳入单位圆内,从而调整依赖于未来预期的金融收益动态。本文介绍了估计、识别和模拟 MARMA 模型的新技术。虽然参数估计是使用二阶矩来完成的,但识别依赖于高阶动态的存在,高阶谱密度和残差平方的相关性捕捉到了这一点。一项全面的蒙特卡罗研究证明了我们的估计和识别方法的稳健性能。我们根据规模、市价账面值、盈利能力、投资和动量等因素,对新兴市场的 24 个投资组合进行了实证应用。所有投资组合都表现出前瞻性行为,显示出显著的非因果和非可逆动态。此外,我们发现残差是不相关和独立的,没有条件波动的痕迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信