{"title":"Adaptive output feedback time-varying formation tracking of multi-agent system with a leader of unknown input","authors":"Jie Wu, Xiaoyi Zhang, Xisheng Zhan, Xiushan Cai","doi":"10.1002/asjc.3499","DOIUrl":null,"url":null,"abstract":"This paper researches the time-varying formation tracking (TVFT) problem of linear multi-agent systems (MASs). By designing a compensator, the problem of time-varying formation can be considered as the output regulation problem. Thereby, the distributed output feedback controller combined with an adaptive technique is proposed. With this controller, follower agents achieve the desired time-varying formation and follow the trajectory of the leader agent. Furthermore, extending the designed controller to the case where the leader agent equips with unknown control input. Using Lyapunov stability theory, it is demonstrated that under proper conditions the given protocol is implementable. Simulation example is presented at the end of the paper to illustrate the effectiveness of designed control mechanism.","PeriodicalId":55453,"journal":{"name":"Asian Journal of Control","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/asjc.3499","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper researches the time-varying formation tracking (TVFT) problem of linear multi-agent systems (MASs). By designing a compensator, the problem of time-varying formation can be considered as the output regulation problem. Thereby, the distributed output feedback controller combined with an adaptive technique is proposed. With this controller, follower agents achieve the desired time-varying formation and follow the trajectory of the leader agent. Furthermore, extending the designed controller to the case where the leader agent equips with unknown control input. Using Lyapunov stability theory, it is demonstrated that under proper conditions the given protocol is implementable. Simulation example is presented at the end of the paper to illustrate the effectiveness of designed control mechanism.
期刊介绍:
The Asian Journal of Control, an Asian Control Association (ACA) and Chinese Automatic Control Society (CACS) affiliated journal, is the first international journal originating from the Asia Pacific region. The Asian Journal of Control publishes papers on original theoretical and practical research and developments in the areas of control, involving all facets of control theory and its application.
Published six times a year, the Journal aims to be a key platform for control communities throughout the world.
The Journal provides a forum where control researchers and practitioners can exchange knowledge and experiences on the latest advances in the control areas, and plays an educational role for students and experienced researchers in other disciplines interested in this continually growing field. The scope of the journal is extensive.
Topics include:
The theory and design of control systems and components, encompassing:
Robust and distributed control using geometric, optimal, stochastic and nonlinear methods
Game theory and state estimation
Adaptive control, including neural networks, learning, parameter estimation
and system fault detection
Artificial intelligence, fuzzy and expert systems
Hierarchical and man-machine systems
All parts of systems engineering which consider the reliability of components and systems
Emerging application areas, such as:
Robotics
Mechatronics
Computers for computer-aided design, manufacturing, and control of
various industrial processes
Space vehicles and aircraft, ships, and traffic
Biomedical systems
National economies
Power systems
Agriculture
Natural resources.