Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Seunghoon Lee, Honnyong Cha, Kisu Kim, Van-Dai Bui
{"title":"Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution","authors":"Seunghoon Lee, Honnyong Cha, Kisu Kim, Van-Dai Bui","doi":"10.1007/s43236-024-00899-x","DOIUrl":null,"url":null,"abstract":"<p>Bipolar dc distribution system is an attractive alternative to replace the conventional ac distribution system; however, it suffers from voltage and current unbalances. In parallel-connected triple-active-bridge (TAB) converters that form a bipolar dc distribution system, the current unbalance between each TAB module and the voltage unbalance between each load are the main issues that make controlling the system difficult. These unbalances occur due to the inevitable mismatch of gate signals and circuit parameters, despite having the same circuit components. A four-winding coupled inductor is proposed in this paper to handle these issues. The coupled inductor is formed by the magnetic integration of the inductors, which are present in TAB converters. Inductors in the same TAB module are directly coupled and the two directly coupled inductors are integrated again in the inverse direction. The proposed coupled inductor automatically balances the currents in each module and the voltages of each load under unbalanced conditions. Moreover, the proposed balancing scheme does not require additional control method or balancer circuit. The performance of the proposed coupled inductor was verified with a 10-kW prototype.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"5 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00899-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Bipolar dc distribution system is an attractive alternative to replace the conventional ac distribution system; however, it suffers from voltage and current unbalances. In parallel-connected triple-active-bridge (TAB) converters that form a bipolar dc distribution system, the current unbalance between each TAB module and the voltage unbalance between each load are the main issues that make controlling the system difficult. These unbalances occur due to the inevitable mismatch of gate signals and circuit parameters, despite having the same circuit components. A four-winding coupled inductor is proposed in this paper to handle these issues. The coupled inductor is formed by the magnetic integration of the inductors, which are present in TAB converters. Inductors in the same TAB module are directly coupled and the two directly coupled inductors are integrated again in the inverse direction. The proposed coupled inductor automatically balances the currents in each module and the voltages of each load under unbalanced conditions. Moreover, the proposed balancing scheme does not require additional control method or balancer circuit. The performance of the proposed coupled inductor was verified with a 10-kW prototype.

Abstract Image

带电流和电压平衡耦合电感器的并联三有源桥式转换器,用于双极直流配电网
双极直流配电系统是取代传统交流配电系统的一种极具吸引力的替代方案,但它存在电压和电流不平衡问题。在构成双极直流配电系统的并联三有源桥(TAB)转换器中,每个 TAB 模块之间的电流不平衡和每个负载之间的电压不平衡是造成系统控制困难的主要问题。尽管电路元件相同,但由于栅极信号和电路参数不可避免地不匹配,因此会产生这些不平衡。本文提出了一种四绕组耦合电感器来解决这些问题。耦合电感器由 TAB 转换器中存在的电感器的磁性整合而成。同一 TAB 模块中的电感器直接耦合,两个直接耦合的电感器在反方向上再次集成。拟议的耦合电感器可在不平衡的条件下自动平衡每个模块中的电流和每个负载的电压。此外,拟议的平衡方案不需要额外的控制方法或平衡电路。我们用一个 10 千瓦的原型验证了所提出的耦合电感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Electronics
Journal of Power Electronics 工程技术-工程:电子与电气
CiteScore
2.30
自引率
21.40%
发文量
195
审稿时长
3.6 months
期刊介绍: The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信