{"title":"Progressive Self-Supervised Learning for CASSI Computational Spectral Cameras","authors":"Xiaoyin Mei;Yuqi Li;Qiang Fu;Wolfgang Heidrich","doi":"10.1109/TCI.2024.3463478","DOIUrl":null,"url":null,"abstract":"Compressive spectral imaging (CSI) is a technique used to capture high-dimensional hyperspectral images (HSIs) with a few multiplexed measurements, thereby reducing data acquisition costs and complexity. However, existing CSI methods often rely on end-to-end learning from training sets, which may struggle to generalize well to unseen scenes and phenomena. In this paper, we present a progressive self-supervised method specifically tailored for coded aperture snapshot spectral imaging (CASSI). Our proposed method enables HSI reconstruction solely from the measurements, without requiring any ground truth spectral data. To achieve this, we integrate positional encoding and spectral cluster-centroid features within a novel progressive training framework. Additionally, we employ an attention mechanism and a multi-scale architecture to enhance the robustness and accuracy of HSI reconstruction. Through extensive experiments on both synthetic and real datasets, we validate the effectiveness of our method. Our results demonstrate significantly superior performance compared to state-of-the-art self-supervised CASSI methods, while utilizing fewer parameters and consuming less memory. Furthermore, our proposed approach showcases competitive performance in terms of reconstruction quality when compared to state-of-the-art supervised methods.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1505-1518"},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684080/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Compressive spectral imaging (CSI) is a technique used to capture high-dimensional hyperspectral images (HSIs) with a few multiplexed measurements, thereby reducing data acquisition costs and complexity. However, existing CSI methods often rely on end-to-end learning from training sets, which may struggle to generalize well to unseen scenes and phenomena. In this paper, we present a progressive self-supervised method specifically tailored for coded aperture snapshot spectral imaging (CASSI). Our proposed method enables HSI reconstruction solely from the measurements, without requiring any ground truth spectral data. To achieve this, we integrate positional encoding and spectral cluster-centroid features within a novel progressive training framework. Additionally, we employ an attention mechanism and a multi-scale architecture to enhance the robustness and accuracy of HSI reconstruction. Through extensive experiments on both synthetic and real datasets, we validate the effectiveness of our method. Our results demonstrate significantly superior performance compared to state-of-the-art self-supervised CASSI methods, while utilizing fewer parameters and consuming less memory. Furthermore, our proposed approach showcases competitive performance in terms of reconstruction quality when compared to state-of-the-art supervised methods.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.