{"title":"Modified Cox Models: A Simulation Study on Different Survival Distributions, Censoring Rates, and Sample Sizes","authors":"Iketle Aretha Maharela, Lizelle Fletcher, Ding-Geng Chen","doi":"10.3390/math12182903","DOIUrl":null,"url":null,"abstract":"The classical Cox model is the most popular procedure for studying right-censored data in survival analysis. However, it is based on the fundamental assumption of proportional hazards (PH). Modified Cox models, stratified and extended, have been widely employed as solutions when the PH assumption is violated. Nevertheless, prior comparisons of the modified Cox models did not employ comprehensive Monte-Carlo simulations to carry out a comparative analysis between the two models. In this paper, we conducted extensive Monte-Carlo simulation to compare the performance of the stratified and extended Cox models under varying censoring rates, sample sizes, and survival distributions. Our results suggest that the models’ performance at varying censoring rates and sample sizes is robust to the distribution of survival times. Thus, their performance under Weibull survival times was comparable to that of exponential survival times. Furthermore, we found that the extended Cox model outperformed other models under every combination of censoring, sample size and survival distribution.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"44 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182903","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The classical Cox model is the most popular procedure for studying right-censored data in survival analysis. However, it is based on the fundamental assumption of proportional hazards (PH). Modified Cox models, stratified and extended, have been widely employed as solutions when the PH assumption is violated. Nevertheless, prior comparisons of the modified Cox models did not employ comprehensive Monte-Carlo simulations to carry out a comparative analysis between the two models. In this paper, we conducted extensive Monte-Carlo simulation to compare the performance of the stratified and extended Cox models under varying censoring rates, sample sizes, and survival distributions. Our results suggest that the models’ performance at varying censoring rates and sample sizes is robust to the distribution of survival times. Thus, their performance under Weibull survival times was comparable to that of exponential survival times. Furthermore, we found that the extended Cox model outperformed other models under every combination of censoring, sample size and survival distribution.
期刊介绍:
Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.