Novel Classes on Generating Functions of the Products of (p,q)-Modified Pell Numbers with Several Bivariate Polynomials

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-18 DOI:10.3390/math12182902
Ali Boussayoud, Salah Boulaaras, Ali Allahem
{"title":"Novel Classes on Generating Functions of the Products of (p,q)-Modified Pell Numbers with Several Bivariate Polynomials","authors":"Ali Boussayoud, Salah Boulaaras, Ali Allahem","doi":"10.3390/math12182902","DOIUrl":null,"url":null,"abstract":"In this paper, using the symmetrizing operator δe1e22−l, we derive new generating functions of the products of p,q-modified Pell numbers with various bivariate polynomials, including Mersenne and Mersenne Lucas polynomials, Fibonacci and Lucas polynomials, bivariate Pell and bivariate Pell Lucas polynomials, bivariate Jacobsthal and bivariate Jacobsthal Lucas polynomials, bivariate Vieta–Fibonacci and bivariate Vieta–Lucas polynomials, and bivariate complex Fibonacci and bivariate complex Lucas polynomials.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182902","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, using the symmetrizing operator δe1e22−l, we derive new generating functions of the products of p,q-modified Pell numbers with various bivariate polynomials, including Mersenne and Mersenne Lucas polynomials, Fibonacci and Lucas polynomials, bivariate Pell and bivariate Pell Lucas polynomials, bivariate Jacobsthal and bivariate Jacobsthal Lucas polynomials, bivariate Vieta–Fibonacci and bivariate Vieta–Lucas polynomials, and bivariate complex Fibonacci and bivariate complex Lucas polynomials.
关于(p,q)修正佩尔数与多个二元多项式乘积的生成函数的新类别
本文利用对称算子δe1e22-l,推导出 p,q 修正佩尔数与各种二元多项式(包括梅森和梅森卢卡斯多项式、斐波纳契和卢卡斯多项式)乘积的新生成函数、二元佩尔多项式和二元佩尔卢卡斯多项式、二元雅各布斯塔尔多项式和二元雅各布斯塔尔卢卡斯多项式、二元维塔-斐波那契多项式和二元维塔-卢卡斯多项式,以及二元复斐波那契多项式和二元复卢卡斯多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信