{"title":"AssocKD: An Association-Aware Knowledge Distillation Method for Document-Level Event Argument Extraction","authors":"Lijun Tan, Yanli Hu, Jianwei Cao, Zhen Tan","doi":"10.3390/math12182901","DOIUrl":null,"url":null,"abstract":"Event argument extraction is a crucial subtask of event extraction, which aims at extracting arguments that correspond to argument roles when given event types. The majority of current document-level event argument extraction works focus on extracting information for only one event at a time without considering the association among events; this is known as document-level single-event extraction. However, the interrelationship among arguments can yield mutual gains in their extraction. Therefore, in this paper, we propose AssocKD, an Association-aware Knowledge Distillation Method for Document-level Event Argument Extraction, which enables the enhancement of document-level multi-event extraction with event association knowledge. Firstly, we introduce an association-aware training task to extract unknown arguments with the given privileged knowledge of relevant arguments, obtaining an association-aware model that can construct both intra-event and inter-event relationships. Secondly, we adopt multi-teacher knowledge distillation to transfer such event association knowledge from the association-aware teacher models to the event argument extraction student model. Our proposed method, AssocKD, is capable of explicitly modeling and efficiently leveraging event association to enhance the extraction of multi-event arguments at the document level. We conduct experiments on RAMS and WIKIEVENTS datasets and observe a significant improvement, thus demonstrating the effectiveness of our method.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"12 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182901","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Event argument extraction is a crucial subtask of event extraction, which aims at extracting arguments that correspond to argument roles when given event types. The majority of current document-level event argument extraction works focus on extracting information for only one event at a time without considering the association among events; this is known as document-level single-event extraction. However, the interrelationship among arguments can yield mutual gains in their extraction. Therefore, in this paper, we propose AssocKD, an Association-aware Knowledge Distillation Method for Document-level Event Argument Extraction, which enables the enhancement of document-level multi-event extraction with event association knowledge. Firstly, we introduce an association-aware training task to extract unknown arguments with the given privileged knowledge of relevant arguments, obtaining an association-aware model that can construct both intra-event and inter-event relationships. Secondly, we adopt multi-teacher knowledge distillation to transfer such event association knowledge from the association-aware teacher models to the event argument extraction student model. Our proposed method, AssocKD, is capable of explicitly modeling and efficiently leveraging event association to enhance the extraction of multi-event arguments at the document level. We conduct experiments on RAMS and WIKIEVENTS datasets and observe a significant improvement, thus demonstrating the effectiveness of our method.
期刊介绍:
Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.