Endpoint weak-type bounds beyond Calderón-Zygmund theory

Zoe Nieraeth, Cody B. Stockdale
{"title":"Endpoint weak-type bounds beyond Calderón-Zygmund theory","authors":"Zoe Nieraeth, Cody B. Stockdale","doi":"arxiv-2409.08921","DOIUrl":null,"url":null,"abstract":"We prove weighted weak-type $(r,r)$ estimates for operators satisfying\n$(r,s)$ limited-range sparse domination of $\\ell^q$-type. Our results contain\nimprovements for operators satisfying limited-range and square function sparse\ndomination. In the case of operators $T$ satisfying standard sparse form\ndomination such as Calder\\'on-Zygmund operators, we provide a new and simple\nproof of the sharp bound $$ \\|T\\|_{L^1_w(\\mathbf{R}^d)\\rightarrow L^{1,\\infty}_w(\\mathbf{R}^d)} \\lesssim\n[w]_1(1+\\log [w]_{\\text{FW}}). $$","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove weighted weak-type $(r,r)$ estimates for operators satisfying $(r,s)$ limited-range sparse domination of $\ell^q$-type. Our results contain improvements for operators satisfying limited-range and square function sparse domination. In the case of operators $T$ satisfying standard sparse form domination such as Calder\'on-Zygmund operators, we provide a new and simple proof of the sharp bound $$ \|T\|_{L^1_w(\mathbf{R}^d)\rightarrow L^{1,\infty}_w(\mathbf{R}^d)} \lesssim [w]_1(1+\log [w]_{\text{FW}}). $$
超越卡尔德龙-齐格蒙理论的端点弱型边界
我们证明了满足$(r,s)$有限范围稀疏支配的$\ell^q$型算子的加权弱型$(r,r)$估计。我们的结果包含了对满足有限范围和平方函数稀疏支配的算子的改进。对于满足标准稀疏形式支配(如 Calder\'on-Zygmund 算子)的算子 $T$ ,我们提供了一个新的、简单的尖锐约束的证明 $$ \|T\|_{L^1_w(\mathbf{R}^d)\rightarrow L^{1,\infty}_w(\mathbf{R}^d)} \lesssim[w]_1(1+\log [w]_{text{FW}}).$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信