Compactness of composition operators on the Bergman space of the bidisc

Timothy G. Clos, Zeljko Cuckovic, Sonmez Sahutoglu
{"title":"Compactness of composition operators on the Bergman space of the bidisc","authors":"Timothy G. Clos, Zeljko Cuckovic, Sonmez Sahutoglu","doi":"arxiv-2409.09529","DOIUrl":null,"url":null,"abstract":"Let $\\varphi$ be a holomorphic self map of the bidisc that is Lipschitz on\nthe closure. We show that the composition operator $C_{\\varphi}$ is compact on\nthe Bergman space if and only if $\\varphi(\\overline{\\mathbb{D}^2})\\cap\n\\mathbb{T}^2=\\emptyset$ and $\\varphi(\\overline{\\mathbb{D}^2}\\setminus\n\\mathbb{T}^2)\\cap b\\mathbb{D}^2=\\emptyset$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\varphi$ be a holomorphic self map of the bidisc that is Lipschitz on the closure. We show that the composition operator $C_{\varphi}$ is compact on the Bergman space if and only if $\varphi(\overline{\mathbb{D}^2})\cap \mathbb{T}^2=\emptyset$ and $\varphi(\overline{\mathbb{D}^2}\setminus \mathbb{T}^2)\cap b\mathbb{D}^2=\emptyset$.
双曲面伯格曼空间上组成算子的紧凑性
让 $\varphi$ 是一个在闭合上是 Lipschitz 的全形自映射。我们证明,当且仅当 $\varphi(\overline\{mathbb{D}^2})\cap\mathbb{T}^2=\emptyset$ 和 $\varphi(\overline\{mathbb{D}^2}\setminus\mathbb{T}^2)\cap b\mathbb{D}^2=\emptyset$ 时,组成算子 $C_{\varphi}$ 在伯格曼空间上是紧凑的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信