Compressions of selfadjoint and maximal dissipative extensions of non-densely defined symmetric operators

Yu. M. Arlinskiĭ
{"title":"Compressions of selfadjoint and maximal dissipative extensions of non-densely defined symmetric operators","authors":"Yu. M. Arlinskiĭ","doi":"arxiv-2409.10234","DOIUrl":null,"url":null,"abstract":"Selfadjoint and maximal dissipative extensions of a non-densely defined\nsymmetric operator $S$ in an infinite-dimensional separable Hilbert space are\nconsidered and their compressions on the subspace ${\\rm \\overline{dom}\\,} S$\nare studied. The main focus is on the case ${\\rm codim\\,}{\\rm\n\\overline{dom}\\,}S=\\infty$. New properties of the characteristic functions of\nnon-densely defined symmetric operators are established.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selfadjoint and maximal dissipative extensions of a non-densely defined symmetric operator $S$ in an infinite-dimensional separable Hilbert space are considered and their compressions on the subspace ${\rm \overline{dom}\,} S$ are studied. The main focus is on the case ${\rm codim\,}{\rm \overline{dom}\,}S=\infty$. New properties of the characteristic functions of non-densely defined symmetric operators are established.
非密集定义对称算子的自相关和最大耗散扩展的压缩
本文考虑了无限维可分离希尔伯特空间中非密集定义对称算子 $S$ 的自交和最大耗散扩展,并研究了它们在子空间 $\{rm \overline{dom}\,} S$ 上的压缩。主要集中在 ${rm codim\,}{\rm\overline{dom}\,}S=\infty$ 的情况。建立了非密定义对称算子特征函数的新性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信