Section method and Frechet polynomials

Dan M Daianu
{"title":"Section method and Frechet polynomials","authors":"Dan M Daianu","doi":"arxiv-2409.11204","DOIUrl":null,"url":null,"abstract":"Using the section method we characterize the solutions $ f:U\\rightarrow Y$ of\nthe following four equations \\begin{equation*} \\sum\\limits_{i=0}^{n}\\left(\n-1\\right) ^{n-i}\\tbinom{n}{i}f\\left( \\sqrt[m]{ u^{m}+iv^{m}}\\right) =\\left(\nn!\\right) f\\left( v\\right) \\text{, } \\end{equation*} \\begin{equation*} f\\left(\nu\\right) +\\sum\\limits_{i=1}^{n+1}\\left( -1\\right) ^{i} \\tbinom{n+1}{i}f\\left(\n\\sqrt[m]{u^{m}+iv^{m}}\\right) =0, \\end{equation*} \\begin{equation*}\n\\sum\\limits_{i=0}^{n}\\left( -1\\right) ^{n-i}\\tbinom{n}{i}f\\left( \\arcsin\n\\left\\vert \\sin u\\sin ^{i}v\\right\\vert \\right) =\\left( n!\\right) f\\left(\nv\\right) \\text{ and } \\end{equation*} \\begin{equation*} f\\left( u\\right)\n+\\sum\\limits_{i=1}^{n+1}\\left( -1\\right) ^{i}\\tbinom{n+1}{i% }f\\left( \\arcsin\n\\left\\vert \\sin u\\sin ^{i}v\\right\\vert \\right) =0, \\end{equation*} where $m\\geq 2$ and $n$ are positive integers,$ \\ U\\subseteq \\mathbb{R} $ is a maximally relevant real domain and $\\left( Y,+\\right) $ is an $\\left(\nn!\\right) $ -divisible Abelian group.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the section method we characterize the solutions $ f:U\rightarrow Y$ of the following four equations \begin{equation*} \sum\limits_{i=0}^{n}\left( -1\right) ^{n-i}\tbinom{n}{i}f\left( \sqrt[m]{ u^{m}+iv^{m}}\right) =\left( n!\right) f\left( v\right) \text{, } \end{equation*} \begin{equation*} f\left( u\right) +\sum\limits_{i=1}^{n+1}\left( -1\right) ^{i} \tbinom{n+1}{i}f\left( \sqrt[m]{u^{m}+iv^{m}}\right) =0, \end{equation*} \begin{equation*} \sum\limits_{i=0}^{n}\left( -1\right) ^{n-i}\tbinom{n}{i}f\left( \arcsin \left\vert \sin u\sin ^{i}v\right\vert \right) =\left( n!\right) f\left( v\right) \text{ and } \end{equation*} \begin{equation*} f\left( u\right) +\sum\limits_{i=1}^{n+1}\left( -1\right) ^{i}\tbinom{n+1}{i% }f\left( \arcsin \left\vert \sin u\sin ^{i}v\right\vert \right) =0, \end{equation*} where $m\geq 2$ and $n$ are positive integers,$ \ U\subseteq \mathbb{R} $ is a maximally relevant real domain and $\left( Y,+\right) $ is an $\left( n!\right) $ -divisible Abelian group.
截面法和弗雷谢特多项式
利用截面法,我们确定了以下四个方程的解 $ f:U\rightarrow Y$ 的特征 \begin{equation*}\^{n-i}\tbinom{n}{i}f\left( \sqrt[m]{ u^{m}+iv^{m}}\right) =\left(n!\right) f\left( v\right) \text{, }\end{equation*}\f\left(u\right) +\sum\limits_{i=1}^{n+1}\left( -1\right) ^{i}\tbinom{n+1}{i}f\left(\sqrt[m]{u^{m}+iv^{m}}\right) =0, \end{equation*}\begin{equation*}sum\limits_{i=0}^{n}left( -1\right) ^{n-i}\tbinom{n}{i}f\left( \arcsin\left\vert \sin u\sin ^{i}v\rightvert\right) =\left( n!\right) f\left(v\right) \text{ and }\end{equation*}\f\left( u\right)+\sum\limits_{i=1}^{n+1}\left( -1\right) ^{i}\tbinom{n+1}{i% }f\left( \arcsin\leftvert \sin u\sin ^{i}v\right\vert \right) =0、\end{equation*} 其中 $mgeq 2$ 和 $n$ 都是正整数,$ U\subseteq \mathbb{R} $ 是一个最大相关实域,$left( Y,+\right) $ 是一个 $left(n!\right)$是一个可分割的阿贝尔群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信