Tanuj Joshi, Abhinav Gupta, Om Parkash, Ralph Kristoffer B. Gallegos, Nay Lin Oo, Gopal Krishan
{"title":"Mathematical Formulations for Predicting Pressure Drop in Solid–Liquid Slurry Flow through a Straight Pipe Using Computational Modeling","authors":"Tanuj Joshi, Abhinav Gupta, Om Parkash, Ralph Kristoffer B. Gallegos, Nay Lin Oo, Gopal Krishan","doi":"10.3390/math12182879","DOIUrl":null,"url":null,"abstract":"The study establishes two mathematical formulations to predict the pressure drop in a solid–liquid slurry flowing through a straight pipe. Employing the Eulerian–Eulerian RNG k-ε model, the computational investigation uses water as the carrier fluid and glass beads as solid particles. The analysis spans various particle sizes (d50 = 75–175 μm), volumetric concentrations (Cvf = 10–50%), and velocities (Vm = 1–5 m/s). The first model, developed using the MATLAB curve-fitting tool, is complemented by a second empirical equation derived through non-polynomial mathematical formulation. Results from both models are validated against existing experimental and computational data, demonstrating accurate predictions for d50 = 75–175 µm particles within a Reynolds number range of 20,000 ≤ Re ≤ 320,000.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The study establishes two mathematical formulations to predict the pressure drop in a solid–liquid slurry flowing through a straight pipe. Employing the Eulerian–Eulerian RNG k-ε model, the computational investigation uses water as the carrier fluid and glass beads as solid particles. The analysis spans various particle sizes (d50 = 75–175 μm), volumetric concentrations (Cvf = 10–50%), and velocities (Vm = 1–5 m/s). The first model, developed using the MATLAB curve-fitting tool, is complemented by a second empirical equation derived through non-polynomial mathematical formulation. Results from both models are validated against existing experimental and computational data, demonstrating accurate predictions for d50 = 75–175 µm particles within a Reynolds number range of 20,000 ≤ Re ≤ 320,000.