The Second Critical Exponent for a Time-Fractional Reaction-Diffusion Equation

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-17 DOI:10.3390/math12182895
Takefumi Igarashi
{"title":"The Second Critical Exponent for a Time-Fractional Reaction-Diffusion Equation","authors":"Takefumi Igarashi","doi":"10.3390/math12182895","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the Cauchy problem of a time-fractional nonlinear diffusion equation. According to Kaplan’s first eigenvalue method, we first prove the blow-up of the solutions in finite time under some sufficient conditions. We next provide sufficient conditions for the existence of global solutions by using the results of Zhang and Sun. In conclusion, we find the second critical exponent for the existence of global and non-global solutions via the decay rates of the initial data at spatial infinity.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"14 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182895","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the Cauchy problem of a time-fractional nonlinear diffusion equation. According to Kaplan’s first eigenvalue method, we first prove the blow-up of the solutions in finite time under some sufficient conditions. We next provide sufficient conditions for the existence of global solutions by using the results of Zhang and Sun. In conclusion, we find the second critical exponent for the existence of global and non-global solutions via the decay rates of the initial data at spatial infinity.
时间分数反应-扩散方程的第二临界指数
本文考虑了时间分数非线性扩散方程的 Cauchy 问题。根据 Kaplan 的第一特征值方法,我们首先证明了在某些充分条件下有限时间内解的炸毁。接下来,我们利用 Zhang 和 Sun 的结果为全局解的存在提供了充分条件。最后,我们通过空间无穷大处初始数据的衰减率,找到了全局解和非全局解存在的第二个临界指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信