A New Instance Segmentation Model for High-Resolution Remote Sensing Images Based on Edge Processing

IF 2.3 3区 数学 Q1 MATHEMATICS
Mathematics Pub Date : 2024-09-18 DOI:10.3390/math12182905
Xiaoying Zhang, Jie Shen, Huaijin Hu, Houqun Yang
{"title":"A New Instance Segmentation Model for High-Resolution Remote Sensing Images Based on Edge Processing","authors":"Xiaoying Zhang, Jie Shen, Huaijin Hu, Houqun Yang","doi":"10.3390/math12182905","DOIUrl":null,"url":null,"abstract":"With the goal of addressing the challenges of small, densely packed targets in remote sensing images, we propose a high-resolution instance segmentation model named QuadTransPointRend Net (QTPR-Net). This model significantly enhances instance segmentation performance in remote sensing images. The model consists of two main modules: preliminary edge feature extraction (PEFE) and edge point feature refinement (EPFR). We also created a specific approach and strategy named TransQTA for edge uncertainty point selection and feature processing in high-resolution remote sensing images. Multi-scale feature fusion and transformer technologies are used in QTPR-Net to refine rough masks and fine-grained features for selected edge uncertainty points while balancing model size and accuracy. Based on experiments performed on three public datasets: NWPU VHR-10, SSDD, and iSAID, we demonstrate the superiority of QTPR-Net over existing approaches.","PeriodicalId":18303,"journal":{"name":"Mathematics","volume":"116 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/math12182905","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

With the goal of addressing the challenges of small, densely packed targets in remote sensing images, we propose a high-resolution instance segmentation model named QuadTransPointRend Net (QTPR-Net). This model significantly enhances instance segmentation performance in remote sensing images. The model consists of two main modules: preliminary edge feature extraction (PEFE) and edge point feature refinement (EPFR). We also created a specific approach and strategy named TransQTA for edge uncertainty point selection and feature processing in high-resolution remote sensing images. Multi-scale feature fusion and transformer technologies are used in QTPR-Net to refine rough masks and fine-grained features for selected edge uncertainty points while balancing model size and accuracy. Based on experiments performed on three public datasets: NWPU VHR-10, SSDD, and iSAID, we demonstrate the superiority of QTPR-Net over existing approaches.
基于边缘处理的高分辨率遥感图像新实例分割模型
为了应对遥感图像中小型密集目标的挑战,我们提出了一种名为 QuadTransPointRend Net(QTPR-Net)的高分辨率实例分割模型。该模型大大提高了遥感图像中的实例分割性能。该模型由两个主要模块组成:初步边缘特征提取(PEFE)和边缘点特征提纯(EPFR)。我们还创建了一种名为 TransQTA 的特定方法和策略,用于高分辨率遥感图像中边缘不确定点的选择和特征处理。QTPR-Net 中采用了多尺度特征融合和变换器技术,在平衡模型大小和精度的同时,为选定的边缘不确定点细化粗糙掩膜和细粒度特征。基于在三个公共数据集上进行的实验:基于在三个公共数据集 NWPU VHR-10、SSDD 和 iSAID 上进行的实验,我们证明了 QTPR-Net 优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics
Mathematics Mathematics-General Mathematics
CiteScore
4.00
自引率
16.70%
发文量
4032
审稿时长
21.9 days
期刊介绍: Mathematics (ISSN 2227-7390) is an international, open access journal which provides an advanced forum for studies related to mathematical sciences. It devotes exclusively to the publication of high-quality reviews, regular research papers and short communications in all areas of pure and applied mathematics. Mathematics also publishes timely and thorough survey articles on current trends, new theoretical techniques, novel ideas and new mathematical tools in different branches of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信