Contrastive Learning in Memristor-based Neuromorphic Systems

Cory Merkel, Alexander Ororbia
{"title":"Contrastive Learning in Memristor-based Neuromorphic Systems","authors":"Cory Merkel, Alexander Ororbia","doi":"arxiv-2409.10887","DOIUrl":null,"url":null,"abstract":"Spiking neural networks, the third generation of artificial neural networks,\nhave become an important family of neuron-based models that sidestep many of\nthe key limitations facing modern-day backpropagation-trained deep networks,\nincluding their high energy inefficiency and long-criticized biological\nimplausibility. In this work, we design and investigate a proof-of-concept\ninstantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic\nform of forward-forward-based, backpropagation-free learning. Our experimental\nsimulations demonstrate that a hardware implementation of CSDP is capable of\nlearning simple logic functions without the need to resort to complex gradient\ncalculations.","PeriodicalId":501517,"journal":{"name":"arXiv - QuanBio - Neurons and Cognition","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Neurons and Cognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking neural networks, the third generation of artificial neural networks, have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks, including their high energy inefficiency and long-criticized biological implausibility. In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning. Our experimental simulations demonstrate that a hardware implementation of CSDP is capable of learning simple logic functions without the need to resort to complex gradient calculations.
基于 Memristor 的神经形态系统中的对比学习
尖峰神经网络是第三代人工神经网络,已成为基于神经元的重要模型系列,它避开了现代反向传播训练的深度网络所面临的许多关键限制,包括其高能量低效率和长期受到批评的生物学不可能性。在这项工作中,我们设计并研究了对比信号依赖可塑性(CSDP)的概念验证,这是一种基于前向、无反向传播学习的神经形态。我们的实验模拟证明,CSDP 的硬件实现能够学习简单的逻辑函数,而无需进行复杂的梯度计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信