Takuya Kobayashi, John J. Molina, Ryoichi Yamamoto
{"title":"Propulsion of a chiral swimmer in viscoelastic fluids","authors":"Takuya Kobayashi, John J. Molina, Ryoichi Yamamoto","doi":"10.1103/physrevresearch.6.033304","DOIUrl":null,"url":null,"abstract":"Microswimmers often use chirality to generate translational movement from rotation motion, exhibiting distinct behaviors in complex fluids compared to simple Newtonian fluids. However, the underlying mechanism remains incompletely understood. In this study, we elucidate the precise mechanisms underlying the distinct behaviors of microswimmers in Newtonian and non-Newtonian fluids. We show that the enhanced speed of chiral swimmers is attributed to the Weissenberg effect induced by normal stress differences resulting from chiral flows. Additionally, we identify swimmer-specific normal stress differences in a viscoelastic fluid and demonstrate that swimming speed varies depending on whether the swimmer acts as a pusher or a puller. Moreover, we investigate the hydrodynamic interactions between a pair of chiral squirmers. When the squirmers are aligned parallel (perpendicular) to their swimming axis, they tend to separate (approach). These findings deepen our comprehension of the rheological properties of viscoelastic fluids containing microswimmers, promising advancements in various applications.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Microswimmers often use chirality to generate translational movement from rotation motion, exhibiting distinct behaviors in complex fluids compared to simple Newtonian fluids. However, the underlying mechanism remains incompletely understood. In this study, we elucidate the precise mechanisms underlying the distinct behaviors of microswimmers in Newtonian and non-Newtonian fluids. We show that the enhanced speed of chiral swimmers is attributed to the Weissenberg effect induced by normal stress differences resulting from chiral flows. Additionally, we identify swimmer-specific normal stress differences in a viscoelastic fluid and demonstrate that swimming speed varies depending on whether the swimmer acts as a pusher or a puller. Moreover, we investigate the hydrodynamic interactions between a pair of chiral squirmers. When the squirmers are aligned parallel (perpendicular) to their swimming axis, they tend to separate (approach). These findings deepen our comprehension of the rheological properties of viscoelastic fluids containing microswimmers, promising advancements in various applications.