Propulsion of a chiral swimmer in viscoelastic fluids

Takuya Kobayashi, John J. Molina, Ryoichi Yamamoto
{"title":"Propulsion of a chiral swimmer in viscoelastic fluids","authors":"Takuya Kobayashi, John J. Molina, Ryoichi Yamamoto","doi":"10.1103/physrevresearch.6.033304","DOIUrl":null,"url":null,"abstract":"Microswimmers often use chirality to generate translational movement from rotation motion, exhibiting distinct behaviors in complex fluids compared to simple Newtonian fluids. However, the underlying mechanism remains incompletely understood. In this study, we elucidate the precise mechanisms underlying the distinct behaviors of microswimmers in Newtonian and non-Newtonian fluids. We show that the enhanced speed of chiral swimmers is attributed to the Weissenberg effect induced by normal stress differences resulting from chiral flows. Additionally, we identify swimmer-specific normal stress differences in a viscoelastic fluid and demonstrate that swimming speed varies depending on whether the swimmer acts as a pusher or a puller. Moreover, we investigate the hydrodynamic interactions between a pair of chiral squirmers. When the squirmers are aligned parallel (perpendicular) to their swimming axis, they tend to separate (approach). These findings deepen our comprehension of the rheological properties of viscoelastic fluids containing microswimmers, promising advancements in various applications.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microswimmers often use chirality to generate translational movement from rotation motion, exhibiting distinct behaviors in complex fluids compared to simple Newtonian fluids. However, the underlying mechanism remains incompletely understood. In this study, we elucidate the precise mechanisms underlying the distinct behaviors of microswimmers in Newtonian and non-Newtonian fluids. We show that the enhanced speed of chiral swimmers is attributed to the Weissenberg effect induced by normal stress differences resulting from chiral flows. Additionally, we identify swimmer-specific normal stress differences in a viscoelastic fluid and demonstrate that swimming speed varies depending on whether the swimmer acts as a pusher or a puller. Moreover, we investigate the hydrodynamic interactions between a pair of chiral squirmers. When the squirmers are aligned parallel (perpendicular) to their swimming axis, they tend to separate (approach). These findings deepen our comprehension of the rheological properties of viscoelastic fluids containing microswimmers, promising advancements in various applications.

Abstract Image

手性游泳器在粘弹性流体中的推进力
与简单的牛顿流体相比,微游子通常利用手性从旋转运动中产生平移运动,在复杂流体中表现出与众不同的行为。然而,人们对其内在机理的了解仍然不够透彻。在这项研究中,我们阐明了微游子在牛顿流体和非牛顿流体中表现出不同行为的精确机制。我们的研究表明,手性游动体速度的提高归因于手性流动导致的法向应力差异所诱发的韦森伯格效应。此外,我们还确定了粘弹性流体中游泳者特有的法向应力差异,并证明游泳者的游泳速度随其作为推手还是拉手而变化。此外,我们还研究了一对手性蠕动体之间的流体力学相互作用。当蠕动器平行于(垂直于)其游动轴时,它们往往会分离(靠近)。这些发现加深了我们对含有微游动体的粘弹性流体流变特性的理解,有望在各种应用中取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信