Adiabatic expansion cooling of antihydrogen

M. Ahmadiet al.(The ALPHA Collaboration)
{"title":"Adiabatic expansion cooling of antihydrogen","authors":"M. Ahmadiet al.(The ALPHA Collaboration)","doi":"10.1103/physrevresearch.6.l032065","DOIUrl":null,"url":null,"abstract":"Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>0.08</mn><mo>±</mo><mn>0.01</mn><mspace width=\"0.28em\"></mspace><mi mathvariant=\"normal\">K</mi></mrow></math> (statistical errors only) from the expanded trap while they escape at average depths of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>0.22</mn><mo>±</mo><mn>0.01</mn></mrow></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>0.17</mn><mo>±</mo><mn>0.01</mn><mspace width=\"0.28em\"></mspace><mi mathvariant=\"normal\">K</mi></mrow></math> from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>38</mn><mo>%</mo></mrow></math> (statistical <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mtext>error</mtext><mo>&lt;</mo><mn>0.2</mn><mo>%</mo></mrow></math>) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.l032065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. Antiatoms escape at an average trap depth of 0.08±0.01K (statistical errors only) from the expanded trap while they escape at average depths of 0.22±0.01 and 0.17±0.01K from two different static traps. (We employ temperature-equivalent energy units.) Detailed simulations qualitatively agree with the escape times measured in the experiment and show a decrease of 38% (statistical error<0.2%) in the mean energy of the population after the trap expansion without significantly increasing antiatom loss compared to typical static confinement protocols. This change is bracketed by the predictions of one-dimensional and three-dimensional semianalytic adiabatic expansion models. These experimental, simulational, and model results are consistent with obtaining an adiabatically cooled population of antihydrogen atoms that partially exchanged energy between axial and transverse degrees of freedom during the trap expansion. This result is important for future antihydrogen gravitational experiments which rely on adiabatic cooling, and it will enable antihydrogen cooling beyond the fundamental limits of laser cooling.

Abstract Image

反氢的绝热膨胀冷却
磁性捕获的反氢原子可以通过扩大捕获器的体积来冷却。我们报告了一项原理验证实验,在该实验中,反原子被有意地从膨胀陷阱和静态陷阱中释放出来。反原子从膨胀阱逸出的平均深度为 0.08±0.01K(仅统计误差),而从两个不同的静态阱逸出的平均深度分别为 0.22±0.01K 和 0.17±0.01K。(详细的模拟结果与实验中测得的逸出时间基本吻合,并表明与典型的静态束缚方案相比,阱膨胀后原子群的平均能量降低了 38%(统计误差为 0.2%),而反原子的损失却没有显著增加。这一变化与一维和三维半解析绝热膨胀模型的预测相一致。这些实验、模拟和模型结果与获得的绝热冷却反氢原子群一致,它们在阱膨胀过程中部分交换了轴向和横向自由度之间的能量。这一结果对于未来依赖绝热冷却的反氢引力实验非常重要,它将使反氢冷却超越激光冷却的基本极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信