Comment on “Tunneling-tip-induced collapse of the charge gap in the excitonic insulator Ta2NiSe5”

Dowook Kim, So Young Kim, Jun Sung Kim, Arthur P. Baddorf, An-Ping Li, Tae-Hwan Kim
{"title":"Comment on “Tunneling-tip-induced collapse of the charge gap in the excitonic insulator Ta2NiSe5”","authors":"Dowook Kim, So Young Kim, Jun Sung Kim, Arthur P. Baddorf, An-Ping Li, Tae-Hwan Kim","doi":"10.1103/physrevresearch.6.038001","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the discrepancy between the estimate of Q. He <i>et al.</i> [<span>Phys. Rev. Res.</span> <b>3</b>, L032074 (2021)], who observed a remarkable collapse of the exciton gap in <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>Ta</mi><mn>2</mn></msub><msub><mi>NiSe</mi><mn>5</mn></msub></mrow></math> due to the electrostatic field between the scanning tunneling microscope (STM) tip and the sample, and that of a recent angle-resolved photoemission spectroscopy investigation [C. Chen <i>et al.</i>, <span>Phys. Rev. Res.</span> <b>5</b>, 043089 (2023)]. It is proposed that a critical factor contributing to this discrepancy is due to He <i>et al.</i>'s assumption of a constant work function of the STM tip. This assumption led to an underestimation of the tip-induced electric field. Using a literature value for the sample work function, a more substantial electric field strength is obtained, which resolves the apparent conflict between the doping estimates of these two techniques. Furthermore, our findings highlight the importance of the STM tip condition, which can significantly impact the tip work function and, consequently, influence the doping estimation in experiments involving tip-induced electric fields.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.038001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the discrepancy between the estimate of Q. He et al. [Phys. Rev. Res. 3, L032074 (2021)], who observed a remarkable collapse of the exciton gap in Ta2NiSe5 due to the electrostatic field between the scanning tunneling microscope (STM) tip and the sample, and that of a recent angle-resolved photoemission spectroscopy investigation [C. Chen et al., Phys. Rev. Res. 5, 043089 (2023)]. It is proposed that a critical factor contributing to this discrepancy is due to He et al.'s assumption of a constant work function of the STM tip. This assumption led to an underestimation of the tip-induced electric field. Using a literature value for the sample work function, a more substantial electric field strength is obtained, which resolves the apparent conflict between the doping estimates of these two techniques. Furthermore, our findings highlight the importance of the STM tip condition, which can significantly impact the tip work function and, consequently, influence the doping estimation in experiments involving tip-induced electric fields.

Abstract Image

关于 "激子绝缘体 Ta2NiSe5 中隧道尖端诱导的电荷间隙塌缩 "的评论
在本研究中,我们调查了何其钦等人[Phys. Rev. Res. 3, L032074 (2021)]的估计与最近的角度分辨光发射光谱调查[C. Chen 等人,Phys. Rev. Res. 5, 043089 (2023)]之间的差异,何其钦等人观察到由于扫描隧道显微镜(STM)针尖与样品之间的静电场导致 Ta2NiSe5 中激子间隙的显著塌缩。有人提出,造成这种差异的一个关键因素是 He 等人假设 STM 针尖的功函数是恒定的。这一假设导致对针尖感应电场的低估。使用文献中的样品功函数值,可以得到更可观的电场强度,从而解决了这两种技术在掺杂估计值上的明显冲突。此外,我们的研究结果还强调了 STM 针尖条件的重要性,它可以显著影响针尖功函数,进而影响涉及针尖诱导电场的实验中的掺杂估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信