Signatures of the attractive interaction in spin spectra of one-dimensional cuprate chains

Zecheng Shen, Jiarui Liu, Hao-Xin Wang, Yao Wang
{"title":"Signatures of the attractive interaction in spin spectra of one-dimensional cuprate chains","authors":"Zecheng Shen, Jiarui Liu, Hao-Xin Wang, Yao Wang","doi":"10.1103/physrevresearch.6.l032068","DOIUrl":null,"url":null,"abstract":"Identifying the minimal model for cuprates is crucial for explaining the high-<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>T</mi><mi>c</mi></msub></math> pairing mechanism. Recent photoemission experiments have suggested a significant near-neighbor attractive interaction <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>V</mi></math> in cuprate chains, favoring pairing instability. To determine its strength, we systematically investigate the dynamical spin structure factors <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>S</mi><mo>(</mo><mi>q</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></math> using the density matrix renormalization group. Our analysis quantitatively reveals a notable softening in the two-spinon continuum, particularly evident in the intense spectrum at large momentum. This softening is primarily driven by the renormalization of the superexchange interaction, as determined by a comparison with the slave-boson theory. We also demonstrate the feasibility of detecting this spectral shift in thin-film samples using resonant inelastic x-ray scattering. Therefore, this provides a distinctive fingerprint for the attractive interaction, motivating future experiments to unveil essential ingredients in cuprates.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.l032068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the minimal model for cuprates is crucial for explaining the high-Tc pairing mechanism. Recent photoemission experiments have suggested a significant near-neighbor attractive interaction V in cuprate chains, favoring pairing instability. To determine its strength, we systematically investigate the dynamical spin structure factors S(q,ω) using the density matrix renormalization group. Our analysis quantitatively reveals a notable softening in the two-spinon continuum, particularly evident in the intense spectrum at large momentum. This softening is primarily driven by the renormalization of the superexchange interaction, as determined by a comparison with the slave-boson theory. We also demonstrate the feasibility of detecting this spectral shift in thin-film samples using resonant inelastic x-ray scattering. Therefore, this provides a distinctive fingerprint for the attractive interaction, motivating future experiments to unveil essential ingredients in cuprates.

Abstract Image

一维铜氧化物链自旋光谱中的吸引力相互作用特征
确定铜氧化物的最小模型对于解释高锝配对机制至关重要。最近的光辐射实验表明,在铜氧化物链中存在显著的近邻吸引力相互作用 V,这有利于配对的不稳定性。为了确定其强度,我们利用密度矩阵重正化群系统地研究了动态自旋结构因子 S(q,ω)。我们的定量分析揭示了双自旋子连续体的显著软化,尤其是在大动量下的强谱中更为明显。这种软化主要是由超交换相互作用的重正化驱动的,这是由与从玻色子理论的比较确定的。我们还证明了利用共振非弹性 X 射线散射在薄膜样品中探测这种光谱偏移的可行性。因此,这为有吸引力的相互作用提供了一个独特的指纹,促使未来的实验揭示铜氧化物的基本成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信